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Chapter 1

Introduction

This document contains practicals to accompany the book Statistical Models (Davison, 2003),
to which references below to Examples, Tables, and Figures refer.

It is taken for granted that you have access to a current version of the statistical package
R and that the libraries MASS, survival, ellipse, and mgcv are installed. If not, see

http://www.r-project.org/

which describes the packages and from which R may be obtained free of charge. You will also
need to install the library SMPracticals, which may be downloaded from the page

http://statwww.epfl.ch/davison/SM/

from which you obtained this file. The practicals assume that these libraries are safely installed,
and that you have launched R and invoked the library by typing

library(SMPracticals)

This document is not intended as a guide to R or to using the S language, on which
numerous excellent books are available in addition to the documentation you will find at

http://www.r-project.org/

See for example Dalgaard (2002), Venables and Ripley (2002), or MainDonald and Braun
(2003).

Once R is launched, online help is available by typing help.start(), and help on a specific
command or dataset (e.g. whatsit) is obtained by typing help(whatsit) or, more simply,
?whatsit, at the R prompt. Much information about R can be obtained from the R mailing
list; see the site above.

Dislaimer and warning

These practicals are provided to help learn the material described in Davison (2003). While
every effort has been made to ensure their correctness, their author gives no warranty for their
behaviour, and accepts no liability of any sort for any consequences that arise, directly or
indirectly, from using them.

Suggestions and comments about the practicals themselves are welcome, and may be incor-
porated into future versions of this document. The author will answer questions about them
at his discretion; answers to general questions about R or the S language should be sought in
the sources above.
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Conventions

In the R code below, the characters following # are comments and need not be typed.
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Chapter 2

Variation

1. Dataframe morley contains data from the Michelson–Morley experiment on the speed of
light. Twenty consecutive measurements were made during each of five experiments. To
see the data, and make its histogram, empirical distribution function, and some boxplots:

library(MASS)

data(morley)

help(morley)

morley

attach(morley)

par(mfrow=c(2,2))

hist(Speed)

plot(sort(Speed),seq(from=0.01,to=1,by=0.01),ylab="EDF",

xlab="Speed",type="s")

plot(Speed~factor(Expt))

qqnorm(Speed)

For some basic statistics:

summary(Speed) # summaries for all 100 observations

mean(Speed)

sqrt(var(Speed))

tapply(Speed,Expt,mean) # and for each experiment separately

sqrt(tapply(Speed,Expt,var))

tapply(Speed,Expt,summary)

Do you think there are differences among the experiments? Briefly summarize what you
have discovered.

As the observations were taken in time order within experiments, they may be dependent.
To see if this is the case, we make scatter plots of successive observations (yj , yj+1) for
each series and give the correlation between yj and yj+1:

par(mfrow=c(2,3))

succ <- function(y,s)

{ j <- 1:(length(y)-1)

co <- cor(y[j],y[j+1])

plot(y[j],y[j+1],xlab="y_j",ylab="y_{j+1}",
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main=paste("Experiment",s,", correlation",round(co,2)))

invisible() }

for (i in 0:4) succ( Speed[20*i+1:20],i+1 )

detach("morley")

Do you think there is dependence between successive observations? If there is, how will
it affect inferences for the true speed of light?

(Section 2.1)

2. Dataframe mathmarks contains results for five mathematics exams for each of 88 students.
To see and plot them:

data(mathmarks)

summary(mathmarks)

apply(mathmarks,2,mean)

sqrt(apply(mathmarks,2,var))

boxplot(mathmarks)

pairs(mathmarks) # see all scatterplots in matrix

For a simpler summary, put results for applied maths and for analysis and statistics
together, and brush-and-spin the result:1

attach(mathmarks)

appl <- (vectors+mechanics)/2

anst <- (analysis+statistics)/2

brush(data.frame(appl,algebra,anst),hist=TRUE)

Play with this display a bit. Can you see the worst and best students? Try brush(mathmarks,hist=T).
What do you learn?

(Section 2.1; Mardia et al., 1979, pp. 3–4)

3. To get a feel for the information in a probability plot, here is a function to generate
samples, standardize them and make a normal probability plot of them:

tp <- function(n=c(10,20,50), line=F, ran.gen=rnorm, lims=c(-4,4), ...)

{ m <- length(n)

for (i in 1:m) for (j in 1:m)

{ y <- ran.gen(n[i],...)

y <- (y-mean(y))/sqrt(var(y))

qqnorm(y,xlim=lims,ylim=lims,main=paste("n=",n[i]))

if (line) abline(0,1,lty=2) }

invisible() }

(a) To produce plots for normal samples of sizes 10, 20 and 50:

par(mfrow=c(3,3),pty="s")

tp() # without line

tp(line=TRUE) # with line

1The command brush is unavailable in R.
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Repeat the last two commands a few times. Is the line useful? What effect has sample
size on the variability of the plot?

(b) To assess what happens for non-normal data, here are samples from the gamma
distribution with shape parameter 4 and from the t distribution with 5 degrees of freedom:

tp(ran.gen=rgamma,shape=4,line=TRUE)

tp(ran.gen=rt,df=5,line=TRUE)

Try each several times, with and without lines and with various values of shape and df.

Write a short summary of your findings.

(c) The function below generates data that are either (1) normal, (2) heavy-tailed, (3)
skewed, (4) light-tailed, (5) have outliers, or (6) rounded.

ran.gen <- function(i,n,m=5)

switch(i,rnorm(n),rt(n,df=m),rgamma(n,shape=m)/m,

(rbeta(n,m,m)-0.5)*m,c(rnorm(n-m),rcauchy(m)),

round(m*rnorm(n)))

par(mfrow=c(3,3),pty="s")

gen <- sample(x=1:6,size=9,replace=TRUE) # make data type

for (i in 1:9) qqnorm(ran.gen(gen[i],500)) # make data and plot them

Which normal scores plot(s) correspond to which types of data? Type gen to see if you’re
right. Try the last two lines again, with 50 replaced by 25, 100, or 500.

(Section 2.1.4)

4. To make a Q-Q plot of 1000 Cauchy variables against 1000 averages of n = 5 Cauchy
variables:

n <- 500; R <- 1000

y <- rcauchy(R)

ybar <- apply(matrix(rcauchy(n*R),R,n),1,mean)

par(pty="s",mfrow=c(1,2)) # square panel with equal axes

lims <- range(y,ybar)

qqplot(y,ybar,xlim=lims,ylim=lims) # note the outliers

abline(0,1,lty=2)

lims <- c(-20,20)

qqplot(y,ybar,xlim=lims,ylim=lims) # close-up

abline(0,1,lty=2)

Repeat this a few times. Try also with n = 10, 100. Does this make any difference? Do
the same for normal and exponential variables, replacing rcauchy with rnorm and rexp.
What is the theoretical explanation?

(Section 2.1.4)

5. Intervals between failures (hours of operating time) for air-conditioning equipment in a
Boeing 720 jet aircraft were
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55 320 56 104 220 239 47 246 176 182 33 15 104 35.

If failures occur as a Poisson process while the planes are running, the intervals will be
independent with a common exponential distribution. Check this using an exponential
probability plot, and give a graphical estimate of the average time between failures. You
may find this code useful:

qqexp <- function(y,...) {

y <- sort(y[!is.na(y)])

n <- length(y)

x <- qexp((1:n)/(n+1))

plot(x,y,xlab="Exponential plotting position",

ylim=range(0,y),xlim=range(0,x),...)

abline(0,mean(y),lty=2)

invisible() }

y <- c(55,320,56,104,220,239,47,246,176,182,33,15,104,35)

qqexp(y,ylab="Air-conditioning data")

(Section 2.1.4; Proschan, 1963; Cox and Snell, 1981, p. 143)
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Chapter 3

Uncertainty

1. If Z has the standard normal distribution, W = |Z| has the half-normal distribution.
Show that Pr(W ≤ w) = 2Φ(w) − 1 for w ≥ 0, and zero otherwise, and deduce that its
p quantile is Φ−1{1

2 (1 + p)}.

If y1, . . . , yn is thought to be a random sample from the N(0, σ2) density and n is small,
it may be useful to replace a normal scores plot of the yj with a half-normal plot, i.e.
a plot of the ordered |yj| against half-normal plotting positions. How you would expect
this to appear if the data were (i) normal, (ii) had heavier tails, and (iii) had lighter
tails? To verify your conjectures:

qqhnorm <- function(y, line=F, ...)

{ y <- y[!is.na(y)] # drops any NAs

n <- length(y); i <- c(1:n); r <- range(c(y,0))

o <- qnorm(0.5*(1+i/(n+1)))

qqplot(o,y,ylim=r,xlab="Half-normal quantile",...)

if (is.numeric(line)) abline(0,line,lty=2)

invisible() }

par(mfrow=c(2,2))

qqhnorm(abs(rnorm(20)),line=1,ylab="Normal data")

qqhnorm(abs(rt(20,df=5)),line=1,ylab="t_5 data")

qqhnorm(abs(rexp(20)-rexp(20)),line=1,ylab="Laplace data")

qqhnorm(rgamma(20,2),line=1,ylab="Gamma(2) data")

Were you right? Write a short summary of your findings.

(Sections 2.1.4, 3.2)

2. The t statistic for a normal random sample was derived in 1908 by a mixture of simulation,
mathematics and guesswork. Before arriving at a mathematical derivation,1 Student
wrote measurements from 3000 criminals on pieces of card, shuffled them thoroughly,
and divided them at random into 750 groups of size n = 4. He then calculated the
average and sample variance, Y and S2, for each group and looked at their empirical
distributions and that of Z = n1/2(Y − µ)/S; he assumed that µ equalled the average of
all 3000 observations. Finding that the fit of the t3 density to the empirical distribution
of Z was excellent, he then set about a mathematical derivation. We can mimic his
simulation and check the distributions of Y , S2 and Z with much less effort:

1His derivation was incomplete, because he assumed but did not prove independence of Y and S
2.
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n <- 4; R <- 750

y <- matrix(rnorm(n*R),R,n)

ybar <- apply(y,1,mean)

s2 <- apply(y,1,var)

z <- ybar/sqrt(s2/n)

par(mfrow=c(2,2),pty="s")

plot(ybar,log(s2),pch=".")

qqnorm(ybar,pch="."); abline(0,1/2,lty=2)

oc <- qchisq(c(1:R)/(R+1),df=n-1)

qqplot(oc,(n-1)*s2,xlab="Chi-squared quantile",pch=".")

abline(0,1,lty=2)

ot <- qt(c(1:R)/(R+1),df=n-1)

qqplot(ot,z,xlab="Student t quantile",pch=".")

abline(0,1,lty=2)

Does the upper left panel support independence of Y and S2?

With Y1, . . . , Yn
iid
∼ N(0, 1) and n = 4, we have Y ∼ N(0, 1

4 ), 3S2 ∼ χ2
3, and Z ∼ t3. Do

the other panels support this?

To repeat your experiment with data from other densities, replace rnorm(n*R) in the
second line above with, for example, rt(n*R,df=3) or rexp(n*R). Do Y and S2 now
seem correlated? How does the distribution of Z change?

(Section 3.2; Student, 1908)

3. Let Y1, . . . , Yn be a random sample from a distribution with zero mean and variance σ2,
and define Wu = n−1(Y1 + · · · + Y⌊nu⌋), for 0 < u ≤ 1.2 Let 0 < u1 < · · · < uk < 1.
Show that as n → ∞ the joint limiting distribution of Wu1

,Wu2
−Wu1

, . . . ,W1 −Wuk
is

multivariate normal with mean zero and covariance matrix σ2diag{u1, u2−u1, . . . , 1−uk},
and hence find the joint distribution of Wu1

,Wu2
, . . . ,Wuk

,W1.
3 This is the distribution

of the points of a Wiener process {Wu} with W0 = 0.

The random process {Wu}, 0 < u ≤ 1 given that W0 = W1 = 0 is called a Brownian

bridge; denote it {Bu}. Thus B0 = B1 = 0. Show that the joint distribution of
Bu1

, . . . , Buk
is multivariate normal with mean zero and covariances given by cov(Bu, Bv) =

σ2u(1 − v), u < v. Show also that Bu
D
= Wu − uW1.

To see what sample paths of a Wiener process and Brownian bridge look like when σ = 1,
repeat the last three lines below a few times.

par(mfrow=c(1,2))

wiener <- function(n) cumsum(rnorm(n))/sqrt(n)

n <- 5000; u <- c(1:n)/n; w <- wiener(n); b <- w-u*w[n]

plot(u,w,ylim=c(-2,2),type="l",ylab="Wiener process")

plot(u,b,ylim=c(-2,2),type="l",ylab="Brownian bridge")

2⌊x⌋ is the largest integer smaller than x.
3Brownian motion is named after Robert Brown, a Scottish botanist who in 1827 observed that pollen grains

suspended in water move erratically and apparently randomly. Such experiments led many nineteenth-century
scientists to believe in the existence of molecules, but only in 1905 did Albert Einstein (1879–1955) confirm this
decisively. The random process that models Brownian motion is called a Wiener process, after Norbert Wiener
(1894–1964) who put it on a firm mathematical footing.
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The sample paths are the limit of a random walk and are highly irregular: in fact they
are continuous everywhere but nowhere differentiable.

(Section 3.2)

4. If U ∼ U(0, 1), show that its mean and variance are 1
2 and 1

12 , and that all its odd
moments are zero.

One approach to generating standard normal variables is to set Z = U1 + · · · + U12 − 6.
Explain the rationale behind this. To generate 10,000 such Zs and see if they appear
normal:

u <- matrix(runif(12*10000),10000,12) # 10,000x12 matrix of Us

z <- apply(u,1,sum)-6 # add across rows

par(pty="s") # square plot

qqnorm(z,pch=".",xlim=c(-4,4),ylim=c(-4,4))

abline(0,1,lty=2)

Should the algorithm be used?

(Section 3.3)

5. Here is an S implementation of a linear congruential generator:

congru <- function(n, M=2^31,a=1,c=1,seed=1)

{ x <- rep(NA,n+1)

x[1] <- seed

for (i in 2:(n+1)) x[i] <- (a*x[i-1] + c) %% M

list(x=x,u=x/M) }

congru(16,M=13,a=2,c=0)

Give the periods when (a) M = 13, a = 2 and c = 0; (b) M = 13, a = 5 and c = 0; and
M = 16, a = 5 and c = 1. Taking a = c = 1 always gives period M . Is it wise?

The once-popular algorithm RANDU used M = 231, a = 216 + 3, and c = 0. To make and
display triples (Ui, Ui+1, Ui+2) from this, 4

n <- 10000

u <- congru(n=n+2,M=2^(31),a=2^(16)+3,c=0)$u

randu <- cbind(u[1:n],u[2:(n+1)],u[3:(n+2)])

spin(randu) # help(spin) gives help

Inspect its lattice structure. Why is RANDU no longer trusted?

To see how lattice structure can interact with transformations to other distributions, we
take M = 2024, a = 65 and c = 1:

u <- matrix(congru(2024,2048,65,1)$u,2,1024)

u1 <- u[1,]

u2 <- u[2,] # u1 and u2 are successive pairs

r <- sqrt(-2*log(u1))

theta <- 2*pi*u2

4This part uses spin and cannot be performed in R.
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x <- r*cos(theta)

y <- r*sin(theta)

par(pty="s")

plot(x,y) # successive pairs for Box-Muller algorithm

Try this with the values for RANDU also.

Does the built-in U(0, 1) generator runif show the same problems?

(Section 3.3)

6. Verify that the following code fragment does the calculations necessary for Example 3.24,
with the simulations for the normal, gamma, and Cauchy cases. Check some of numbers
in Table 3.2 of the book.

cover.sim <- function(n, ran.gen=rnorm, a=c(0.95,0.975), R=1600, ...)

{ z <- matrix( ran.gen(n*R,...),R,n)

zbar <- apply(z,1,mean)

sz <- sqrt(apply(z,1,var))

t <- sqrt(n)*zbar/sz

c1 <- c2 <- NULL

for (i in 1:length(a)) {

c1 <- c(c1,mean(t<qt(1-a[i],df=n-1)))

c2 <- c(c2,mean(t<qt(a[i],df=n-1))) }

100*matrix(rbind( c1, c2, c2-c1 ),nrow=1,byrow=F) }

rgam <- function(n, shape ) rgamma(n,shape)-shape

rmix <- function(n, p=0.1) rnorm(n,sd=sqrt(1+8*(runif(n)<p)))

rlaplace <- function(n) rexp(n)-rexp(n)

cover.sim(10)

cover.sim(10, ran.gen=rgam, shape=2)

cover.sim(10, ran.gen=rcauchy)

(Section 3.3)
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Chapter 4

Likelihood

1. Following Example 4.21, we assess the effect of rounding on the usual estimates for
a normal random sample Y1, . . . , Yn, rounded to X1, . . . ,Xn. The rounded data have
average and variance X and S2 = (n − 1)−1

∑
(Xj − X)2, whose means are κ1 and κ2,

where the κr are the cumulants of X. Their variances are κ2/n and κ4/n + 2κ2
2/(n − 1).

The following function calculates the efficiencies and means of these estimators relative
to those based on Y1, . . . , Yn, when the Yj ∼ N(µ, σ2).

I.moments <- function(delta, n=10, m=0, s=1, dig=4)

{ k <- seq(from=-5,to=5,by=delta)

pi <- pnorm( (k+0.5*delta-m)/s ) - pnorm( (k-0.5*delta-m)/s )

k1 <- sum(pi*k); k2 <- sum(pi*k^2)

k3 <- sum(pi*k^3); k4 <- sum(pi*k^4)

k4 <- k4 - 4*k1*k3 - 3*k2^2 + 12*k1^2*k2 - 6*k1^4

k3 <- k3 - 3*k1*k2+2*k1^3

k2 <- k2 - k1^2

eff.m <- s^2/k2

eff.v <- (2*s^4/(n-1))/(k4/n + 2*k2^2/(n-1))

round(c(100*eff.m,100*eff.v,k1,k2),digits=dig) }

I.moments(0.01)

Read the function carefully to check it works as advertized.

Obtain the efficiencies for various values of δ/σ and n. Is Table 4.2 of the book mislead-
ing?

2. births contains the data in Table 2.1 on times spent on delivery suite by 95 women. A
possible model for these data is that the number of women arriving each day is Poisson,
with mean θ, and that the time spent by each of them has a gamma distribution with
mean µ and shape parameter α.

(a) For a sample m1, . . . ,mk from the Poisson distribution

f(m; θ) =
θm

m!
e−θ, θ > 0,m = 0, 1, . . . ,

find the maximum likelihood estimate and gives its asymptotic variance.

(b) Show that the gamma distribution parametrized as

f(y;µ, α) =
αα

Γ(α)µα
yα−1 exp(−αy/µ), α, µ > 0, y > 0,
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has mean µ and variance µ2/α, and find the information matrix I(µ, α) based on a
sample y1, . . . , yn. Show that given α, the maximum likelihood estimate of µ is µ̂α = y,
and hence verify that the following S-Plus functions yield the profile log likelihood
ℓp(α) = ℓp(α, µ̂α):

logL.gam <- function(alpha, y)

{ muhat <- mean(y)

L <- dgamma( alpha*y/muhat, shape=alpha )*alpha/muhat

-sum(log(L)) }

(c) Now apply the ideas from (a) and (b) to the birth data:

data(births)

fit <- nlm(logL.gam, 1, hessian=TRUE, y=time)

alphahat <- fit$estimate

se.alphahat <- sqrt(diag(solve(fit$hessian))) # sqrt(diagonal of inverse hessian)

muhat <- mean(time)

to obtain the maximum likelihood estimates. Obtain the standard error for µ̂, and give
95% confidence intervals for θ, α, and µ.

(d) Gamma probability plot to assess the quality of the model:

par(pty="s")

n <- length(time)

qqplot( mean(time)*qgamma(c(1:n)/(n+1), shape=alphahat)/alphahat, time,

xlab="Quantile of fitted gamma distribution" )

abline(0,1,lty=2)

(Sections 4.1–4.4)

3. Once upon a time, on a spring afternoon in Portland, Oregon, these data were collected
on the sizes of different groups of people in the park, in the street, and so forth:

Group size y 1 2 3 4 5 6
Frequency n 1486 694 195 37 10 1

A possible model is that the group sizes have truncated Poisson density

f(y; θ) =
θye−θ

y!(1 − e−θ)
, y = 1, 2, . . . , θ > 0.

To plot the log likelihood ℓ(θ) over 0.1 ≤ θ ≤ 2:

y <- c(1:6)

n <- c(1486,694,195,37,10,1)

nlogL <- function(x, y, n.obs) # x is theta

{ f <- dpois(y,x)/(1-dpois(0,x)) # dpois is Poisson PDF

-sum(n*log(f)) } # negative log likelihood

theta <- seq(from=0.1,to=2,length=200)

L <- rep(NA,200)

for (i in 1:200) L[i] <- -nlogL(theta[i],y,n)

plot(theta,L,type="l",ylab="Log likelihood")
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You may like to plot this on a smaller interval. What values of θ seem plausible?

To minimize −ℓ(θ) using nlm, find the observed information J(θ̂) numerically and the
95% confidence interval using z1(θ) = J(θ̂)1/2(θ̂ − θ):

x0 <- 1 # initial value

fit <- nlm(nlogL, x0, hessian=TRUE, y=y, n.obs=n)

fit # see results of minimization

thetahat <- fit$estimate

J.inv <- diag(solve(fit$hessian)) # inverse of Hessian

thetahat-qnorm(c(0.975,0.025))*sqrt(J.inv) # 95% confidence interval based on thetahat

For a 95% confidence interval based on the signed likelihood ratio statistic z2(θ) =
sign(θ̂ − θ)w(θ)1/2:

theta <- seq(from=0.8,to=1,length=200)

for (i in 1:200) L[i] <- -nlogL(theta[i], y, n)

w <- -2*(L+fit$minimum)

z2 <- sign(thetahat-theta)*sqrt(w)

plot(theta,z2,type="l",ylab="Signed likelihood ratio statistic")

lines(theta,(thetahat-theta)/sqrt(J.inv),lty=2)

abline(h=c(-1.96,1.96),lty=3)

abline(h=0)

What do you deduce from the close agreement between the diagonal lines showing z2(θ)
and z1(θ) in the range of interest? Does your deduction agree with the confidence interval
obtained from the likelihood ratio statistic, by lik.ci(theta, L)?

For a chi-squared goodness of fit statistic:

E <- sum(n)*dpois(y,thetahat)/(1-dpois(0,thetahat))

P <- sum( (n-E)^2/E ) # Pearson’s statistic

How many degrees of freedom has this? To get the significance level, 1-pchisq(P,df),
where df is your chosen value. Is the fit good?

(Sections 4.1–4.5)

4. The data below are from an experiment of Rutherford and Geiger in which the number
of α-particles registered by a counter in periods of one-eighth of a minute were recorded;
n represents the number of particles and y the number of times n was observed:

n 0 1 2 3 4 5 6 7 8 ≥ 9 Total
y 57 203 383 525 532 408 273 139 45 43 2608

On the supposition that the events form a Poisson process of rate 8λ events per minute,
show that the probability of 9 or more events is exp(−λ)

∑∞
r=9 λr/r!, and hence write

down the likelihood for the observed data. Maximize it numerically1 and give a confidence
interval for 8λ. How well does the model fit?

(Sections 4.1–4.4; Moore, 1952)

1You may find it useful to look at the preceding practical.
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5. blood contains data on the incidence of blood groups O, A, B, and AB in 12 different
studies on people living in Britain or of British origin living elsewhere. To fit the single-
locus model used in Example 4.38, we use the following code, which computes the fitted
probabilities and then the negative log likelihood starting from (log λA, log λB):

make.prob <- function(log.lam)

{

lamA <- exp(log.lam[1])

lamB <- exp(log.lam[2])

lamO <- 1-lamA-lamB

piA <- lamA*(lamA+2*lamO)

piB <- lamB*(lamB+2*lamO)

piAB <- 2*lamA*lamB

piO <- lamO^2

c(piO,piA,piB,piAB)

}

nlogL <- function(log.lam, y) -sum(y*log(make.prob(log.lam)))

To fit this to each of the studies separately:

fits <- list(neg.loglik=rep(NA,12),lambda=matrix(NA,12,3),

fitted=matrix(NA,12,4))

for (i in 1:nrow(blood))

{

fit <- nlm(nlogL, c(-1,-3),y=blood[i,])

fits$neg.loglik[i] <- fit$minimum

fits$lambda[i,1:2] <- exp(fit$estimate)

fits$lambda[i,3] <- 1- sum(fits$lambda[i,-3])

fits$fitted[i,] <- sum(blood[i,])*make.prob(fit$estimate)

}

fits

The overall chi-squared statistic is computed by

sum( (fits$fitted-blood)^2/fits$fitted )

How many degrees of freedom has this? Does the model seem to fit?

To see a model with the same values of λA, λB fitted to the entire dataset:

fit <- nlm(nlogL, c(-1,-3),y=apply(blood,2,sum))

2*(fit$minimum-sum(fits$neg.loglik))

What does this last calculation give? Which model seems to fit best?

(Chapter 4; Taylor and Prior, 1938)

6. The generalized Pareto distribution function is2

G(y;σ, ξ) =

{
1 − (1 + ξy/σ)

−1/ξ
+ , ξ 6= 0,

1 − exp(−y/σ), ξ = 0.
(4.1)

2
x+ equals x if x > 0, and otherwise equals zero.

14



Note that if ξ < 0, then the support3 of the generalized Pareto density function is (0, γ),
where γ = −σ/ξ. What implications has this for estimation?

(a) Check that this function implements simulation by inversion from this distribution:

rgpd <- function(n, s=1, xi=0)

ifelse(rep(xi,n)==0,-s*log(runif(n)),s*(runif(n)^(-xi)-1)/xi)

and perform some comparisons of data generated from (4.1) with the exponential distri-
bution:

qqexp(rgpd(100))

qqexp(rgpd(100, xi=1))

qqexp(rgpd(100, xi=-1))

(b) We now set σ = 1, and consider maximum likelihood estimation of ξ. By noting that
y/(1 + ξy) = 1− ξ−1(1 + ξy)−1, show that the score function has finite expectation only
if ξ > −1, and finite variance only if ξ > −1/2. Deduce that a necessary condition for
maximum likelihood estimation to be regular is that ξ > −1/2.

(c) To see what (b) implies in practice, we plot log likelihoods for some samples from
(4.1):

par(mfrow=c(3,3),pty="s")

negL <- function(xi, y) (1/xi+1)*sum(log(1+y*xi)) # negative log likelihood

L <- xi <- seq(from=-1,to=3,length=100)

xi.sim <- 1; n <- 50

for (i in 1:9) # repeat from here

{ y <- rgpd(n, xi=xi.sim)

for (i in 1:length(xi)) L[i] <- -negL(xi[i],y)

plot(xi,L,type="l") }

Repeat this last command with xi.sim equal to 1, 0, −0.2, −0.5, and −1, and discuss
how the maximum likelihood estimator ξ̂ will behave. Does it help to take n = 200, say?

(d) Let Y1, . . . , Yn denote a random sample from (4.1), and set Mn = max{Y1, . . . , Yn}.
By writing (4.1) as a function of ξ and γ, show that n−ξ(γ−Mn)/γ has a non-degenerate
limiting distribution as n → ∞, and deduce that if ξ < −1/2 then the rate of convergence
of Mn to γ is faster than n1/2. This implies that the estimator γ̃ = Mn can be treated
as fixed equal to γ, at least asymptotically. Hence suggest the form of an estimator ξ̃ for
ξ, and use simulated data to assess the performance of γ̃ and ξ̃ based on samples of size
n = 50 when ξ = −1,−0.7,−0.5,−0.3.

(Section 4.6; Smith, 1985)

3The set where the density is positive.
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Chapter 5

Models

1. forbes contains data due to James Forbes on the relation between atmospheric pressure
(inches of mercury) and the boiling point of water (degrees Fahrenheit) at 17 locations
in the Alps; he sought a formula for predicting pressure y from boiling point x. To see
the data and plot them on various scales:

data(forbes)

attach(forbes)

forbes

par(mfrow=c(2,2))

plot(bp,pres)

plot(log(bp),pres)

plot(bp,log(pres))

plot(log(bp),log(pres))

Are all the points close to a straight line? Which plot seems closest to linear?

To fit a straight-line model and print estimates and their standard errors:

fit <- lm(pres~bp)

summary(fit)

Give a careful interpretation of the estimates, including their units, and compute the
predicted value when x = 200◦F. For a different (better?) parametrization:

x <- bp-190

fit <- lm(pres~x)

summary(fit)

Again interpret the estimates. Are any equal to those for the first fit? Why? What
about the standard errors and t statistics?

For a graphical summary and a look at the residuals:

plot(x,pres)

abline(fit)

plot(fitted(fit),resid(fit)) # plot residuals against fitted values

To see the residuals yj− ŷj, type resid(fit). Can you see any problems with the model?
For a (possibly) better model:
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fit <- lm(log(pres)~bp,subset=-12)

summary(fit)

plot(bp,log(pres))

abline(fit)

plot(bp[-12],resid(fit))

Do the residuals look better now? What is your prediction equation for E(log Y ) in
terms of x? Give a standard error and 95% confidence interval for β0 +200β1, and a 95%
prediction interval for a new value of Y taken when x = 200.

(Section 5.1; Atkinson, 1985)

2. aml contains remission times in weeks for two groups of patients with acute myelogeneous
leukaemia, one of which received maintenance chemotherapy. There are censored times
in each group. To see the data and compare the product-limit estimates for the two
groups:

library(survival)

data(aml)

aml

?survfit # check use of function survfit for fitting survival models

fit <- survfit(Surv(time, status)~x,data=aml)

plot(fit,lty=c(1,2))

par(mfrow=c(1,2))

plot(survfit(Surv(time, status)~x,data=aml[1:11,]),xlim=c(0,180))

plot(survfit(Surv(time, status)~x,data=aml[12:23,]),xlim=c(0,180))

Do you think there is difference in survival between the two groups?

The function survreg is used to fit parametric models. To fit separate exponential means
to the two groups, for example:

fit.exp <- survreg(Surv(time,status)~x, dist="exp",data=aml)

summary(fit.exp)

The model is parametrized so that the mean of the first (maintained) group is exp(β1)
and that of the second group is exp(β1+β2). In the output z is β̂/SE(β̂) and Chisq is the
likelihood ratio statistic for a difference between groups. Is the effect of chemotherapy
significant? Does the sign of β̂2 make sense? Give a 95% confidence interval for β2, based
on asymptotic likelihood results.

To assess the fit of the model:

par(mfrow=c(1,1))

plot(fit,lty=c(1,2))

x <- seq(from=0,to=180,by=1)

lines(x,1-pexp(x,exp(-coef(fit.exp)[1])))

lines(x,1-pexp(x,exp(-sum(coef(fit.exp)))),lty=2)

Is there a significant difference between the two groups? Which has better survival?

To fit a Weibull density in which both groups have the same shape parameter (confusingly
called scale in the output):
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fit.wei <- survreg(Surv(time,status)~x,data=aml)

summary(fit.wei)

2*(fit.wei$loglik[2]-fit.exp$loglik[2])

This last calculation compares the Weibull and exponential models using their likelihood
ratio statistic. Does the Weibull model fit better?

To add the lines for the fitted Weibull model to the graph:

lines(x,1-pweibull(x,fit.wei$scale,exp(coef(fit.wei)[1])),lty=3)

lines(x,1-pweibull(x,fit.wei$scale,exp(sum(coef(fit.wei)))),lty=4)

Is the fit better?

Are matters improved if the shape parameter is allowed to vary between the two groups?

fit.wei1 <- survreg(Surv(time,status)~x,data=aml[1:11,])

fit.wei2 <- survreg(Surv(time,status)~x,data=aml[12:23,])

summary(fit.wei1)

summary(fit.wei2)

2*(fit.wei1$loglik[1]+fit.wei2$loglik[1]-fit.wei$loglik[2])

Look at the help for survreg, and try fitting with some of the other distributions. Does
any fit the data better?

(Section 5.4; Miller, 1981, p. 49)

3. (a) Following Example 5.36, show that the complete-data log likelihood for a p-component
mixture of exponential families can be written as

δ(u − r) {log πr + sr(y)θr(ωr) − br(ωr)} ,

and deduce that π†
r = n−1

∑
j wr(yj; θ

′).

Find the expressions for µ̂†
r for the exponential and Poisson densities µ−1e−y/µ and

µye−µ/y!, and show that these are always positive for samples y1, . . . , yn in which at
least one observation is positive.

(b) To illustrate these calculations we fit a mixture model to the HUS counts of Ex-
ample 4.40, ignoring their time dependence. The functions wei, update and loglik

below respectively compute the weights, update from θ′ to θ† and compute the log like-
lihood, while EM iterates the algorithm until convergence.

wei <- function(th, y)

{ # produce n times p matrix of weights

w <- matrix(NA,length(y),ncol(th))

for (r in 1:ncol(th)) w[,r] <- th[1,r]*dpois(y,th[2,r])

sweep(w,1,apply(w,1,sum),"/") }

update <- function(th, y)

{ # update theta to theta.dagger

w <- wei(th, y)

th[1,] <- apply(w,2,mean)

th[2,] <- crossprod(w,y)/apply(w,2,sum)
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th }

loglik <- function(th, y)

{ # compute log likelihood at current theta

d <- rep(0,length(y))

for (r in 1:dim(th)[2]) d <- d + th[1,r]*dpois(y,th[2,r])

sum(log(d)) }

EM <- function(init, y, tol=10^(-6))

{ # iterate EM algorithm starting from init

# stopping criterion is relative change in log lik < tol

L.init <- loglik(init, y)

th <- update(init, y)

L.th <- loglik(th, y)

R <- 1

while (abs((L.th-L.init)/L.th)>tol)

{ init <- th

L.init <- L.th

th <- update(init, y)

L.th <- loglik(th, y)

R <- R+1 }

list(theta=th, L=L.th, R=R) }

To apply these to the data:

y <- hus$birmingham

p <- 1 # 1-component mixture, with starting-values pi=1, mu=2

init1 <- matrix(c(1,5), 2, p)

fit1 <- EM(init1, y)

p <- 2 # 2-component mixture with pi1=pi2=0.5, mu1=5, mu2=1

init2 <- matrix(c(0.5, 5, 0.5, 1), 2, p)

fit2 <- EM(init2, y)

fit1 # compare fits

fit2

plot(wei(fit2$theta, y)[,1]) # plot final weights for group 1

For which yj are the πr(yj; θ̂) > 0.5? Does this make sense?

Compare the fits using log likelihood and AIC. Does a three-component mixture improve
matters? Which do you think best? Do your conclusions differ for the Newcastle data?

(c) Implement expression (5.40) for this example with p = 2 and obtain the standard
errors of π̂1, µ̂1 and µ̂2.

(d) Which lines of the code above would have to be modified to fit a mixture of exponential
densities?

(Section 5.5.2)

4. A simple (perhaps overly simple) model for outliers in normal samples is that data arise
from the mixture density

(1 − p)σ−1φ{(y − µ)/σ} + p(kσ)−1φ{(y − µ)/(kσ)},
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where k > 1 is known but µ, σ and p are not. Under this model outliers arise with
probability p from a normal density with mean µ but variance larger than σ2. Show
how µ, σ2 and p may be estimated using the EM algorithm and modify the code in the
previous practical to fit this model. Try out your code on the data in the final column
of Table 1.1, using k = 1, 2, 3. How do the estimates depend on k?

(Section 5.5.2)
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Chapter 6

Stochastic Models

1. We fit stationary Markov chains up to third order using the function MClik. Study the
code for MClik carefully, and explain how it works. To apply this to the daily rainfall
data on the Pacific island of Alofi:

alofi.fit <- MClik(alofi)

What order of chain appears to give the best fit, (i) using likelihood ratio tests, (ii) using
AIC?

Discuss how the model might fail, and say how you could assess how well it fits the data.

(Section 6.1; Avery and Henderson, 1999)

2. frets contains data from Frets (1921) on the length and breadth of the heads of the first
and second adult sons in a sample of 25 families. For an exploratory analysis:

data(frets)

cor(frets)

pairs.mod(frets)

How should the scatterplot matrix be interpreted?

The distribution of a correlation coefficient R based on a random sample of size from
a bivariate normal distribution with correlation ρ may be approximated using Fisher’s
z-transformation:

Z = 1
2 log

(
1 + R

1 − R

)
.
∼ N

(
1
2 log

(
1 + ρ

1 − ρ

)
,

1

n − 3

)
.

This can be used to assess whether individual partial correlation coefficients estimated
from the full model are significantly different from zero:

fisher <- function(r, n) c(0.5*log((1+r)/(1-r)), sqrt(1/(n-3)))

fisher(0.13,25)

What do you conclude? Using this crude approach, which partial correlations appear
to be zero? A better approach is to use the R library ggm for fitting graphical Gaussian
models:
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library(ggm) # you may need to download this R library

gr <- UG(~ l1*b1+l1*l2+l1*b2+b1*l2+b1*b2+l2*b2) ## Graph with all edges

fitConGraph(gr, cor(frets), n=25)

gr <- UG(~ l1*b1+l1*l2+b1*b2+l2*b2) # Drop edges for partial correlations < 0.2

fitConGraph(gr, cor(frets), n=25)

gr <- UG(~ l1*b1+l2*b2) # Independent heads,so just two edges

fitConGraph(gr, cor(frets), n=25)

If the model provides an adequate fit, the deviance should have an approximate chi-
squared distribution with the given degrees of freedom. Try fitting some other models,
and give the interpretation of the best-fitting one.

(Section 6.3; Whittaker, 1990, pp. 254–260)

3. manaus contains the monthly average river height or stage of the Rio Negro near the
central Amazonian city of Manaus from 1903–1992. To see the data and its correlogram
and autocorrelogram:

data(manaus)

par(mfrow=c(2,2))

plot(manaus)

acf(manaus)

pacf(manaus)

To fit autoregressive models and to see the corresponding values of AIC:

fit <- ar(manaus)

fit$aic

plot(fit$aic)

plot(fit$aic[-1]) # AIC without initial huge value

Compare carefully the form of the AIC and the partial autocorrelogram. Where do the
big drops in AIC come?

ARMA models may be fitted with the R routine arima. For example,

fit1 <- arima(manaus,order=c(1,0,1))

fit1

fits an ARMA model with p = q = 1 to the original data, and

fit2 <- arima(manaus,order=c(1,1,1))

fit2

fits such a model to the differences of the original data. To assess the quality of the fit,
use tsdiag(fit1), which shows the residuals from a fitted model, their correlogram, and
P-values for an overall or portmanteau goodness of fit test. Try fitting various models,
and say which you think is a good compromise between simplicity and fit. Discuss the
interpretation of your chosen model.

(Section 6.4)
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4. lake, defined below, gives data on major freezes of Lake Constance for the years 875–
1974 AD; in each the 7–14km wide upper lake could be crossed on foot or by vehicle. The
code plots the cumulative number of freezes, gives a kernel estimate of the intensity, and
produces an exponential probability plot of the intervals between them. Do you think
they follow a homogeneous Poisson process? Give reasons.

lake <- c(

875,895,

928,

1074,1076,

1108,

1217,1227,1277,

1323,1325,1378,1379,1383,

1409,1431,1435,1460,1465,1470,1479,1497,

1512,1553,1560,1564,1565,1571,1573,

1684,1695,

1763,1776,1788,1796,

1830,1880,

1963

)

n <- length(lake)

u <- c(0:(n-1),n-1)

par(pty="s",mfrow=c(2,2))

plot(c(lake,1974),u,xlim=c(800,1974),ylim=c(0,40),

ylab="Cumulative number of freezes", xlab="Year",type="s")

d <- density(lake,from=875,to=1974)

d$y <- d$y*length(lake)/(1974-875)

plot(density(lake)) # kernel intensity estimate

d <- diff(c(lake,1974))

qqexp(d, line=TRUE)

We now fit a Poisson process model with intensity given by log λ(t) = θ1 + θ2(t − θ3)
2.

The integral ∫ 1974

875
λ(t) dt

is approximated by summation, though of course more sophisticated approaches are
possible, including exact computation — particularly easy when θ2 < 0.

logL <- function(theta, d=c(lake,1974))

{

n <- length(d)-1

u <- 0.01*seq(from=min(d),to=max(d),by=1)

lambda <- exp(theta[1]+theta[3]*(u-theta[2])^2 )

sum(lambda) - sum(log(lambda[d[1:n]-d[1]+1]))

}

logL( c(0.1,15,-10^(-5)) )

fit <- nlm(logL, c(1.25,15,-5*10^(-2)), hessian=TRUE,d=c(lake,1974))

fit$estimate # estimates

sqrt(diag(solve(fit$hessian))) # standard errors
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Note how the parameters are rescaled to avoid numerical difficulties. Give a careful
interpretation of the estimates and their standard errors. Is it clear that the intensity
function is not constant?

To transform the data to uniformity, graph them on the uniform scale, and test uniformity
with a Kolmogorov–Smirnov test:

U <- function(t, theta, t.bot=875, t.top=1974, step=1)

{

u <- 0.01*seq(from=t.bot, to=t.top, by=step)

lambda <- exp(theta[1]+theta[3]*(u-theta[2])^2 )

sum(lambda[((100*u)<=t)])/sum(lambda)

}

t.trans <- c(lake,1)

for (i in 1:n) t.trans[i] <- U(lake[i],fit$estimate)

plot(t.trans,c(0:n)/n,xlim=c(0,1),

ylab="Cumulative distribution", xlab="Transformed time",type="s")

abline(0,1,lty=2)

ks.test(t.trans,"punif") # Kolmogorov-Smirnov test of uniformity

Does the model fit these data well? Do you think such a model can be a reasonable basis
for extrapolation?

(Section 6.5.1; Steinijans, 1976)

5. ftse contains data from Example 6.23 on the Financial Times Stock Exchange index of
daily London closing prices from 1991–1998. The data in ftse are the daily percentage
returns yt = 100 log(xt/xt−1), where xt is the closing price on day t. To see the original
time series and the return series:

par(mfrow=c(1,2))

plot(exp(cumsum(ftse/100)),main="Closing prices",type="l",ylab="Closing price")

plot(ftse,main="Daily returns (%)")

We fit extreme-value models using the R library evir:

library(evir) # may need to be installed

meplot(ftse) # sample mean residual life (= mean excess) plot

This plot has a clear change at around u = 1, and thresholds greater than this seem
indicated. To check this, we see how the estimated shape parameter varies with u:

shape(ftse)

Here values u > 0.8 seem indicated. We fit the generalized Pareto distribution to ex-
ceedances of u = 1:

fit <- gpd(ftse,threshold=1)

plot(fit)

This threshold seems a little low for a good fit, so we try u = 1.5:
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fit <- gpd(ftse,threshold=1.5)

plot(fit)

Does this seem adequate? Try varying u and seeing how the fit changes. When you are
satisfied,

quant(ftse)

shows how estimates of the 0.99 quantile change as a function of u: seems to make little
difference in this case.

Repeat this for the lower tail, by applying the calculations above to -ftse, and discuss
your conclusions.

(Section 6.4)
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Chapter 7

Theory

1. paulsen contains data collected as part of an investigation into the quantal nature of
neurotransmission in the brain, by Dr O. Paulsen of the Department of Pharmacology,
University of Oxford, in collaboration with Professor P. Heggelund of the Department of
Neurophysiology, University of Oslo. Two models have been proposed to explain such
data. The first model suggests that the data are drawn from an underlying skewed
unimodal distribution. The alternative model suggests that the data are drawn from a
series of distributions with modes equal to integer multiples of a unit size. To get some
insight into this, we make density estimates with various bandwidths h:

library(MASS) # Venables-Ripley library

library(boot) # remove this when paulson is in SM library

attach(paulsen)

h <- 1.5

hist(y,probability=TRUE,breaks=c(0:30))

lines(density(y,bw=h,from=0,to=30))

rug(y)

h.lcv <- ucv(y)

h.lcv # value of h chosen by least squares cross-validation

lines(density(y,bw=h.lcv,from=0,to=30),lty=2)

h.bcv <- bcv(y)

h.bcv # value of h chosen by biased cross-validation

lines(density(y,bw=h.bcv,from=0,to=30),lty=2)

h.SJ <- width.SJ(y)

h.SJ # value of h chosen by Sheather-Jones procedure (preferable to CV)

lines(density(y,bw=h.SJ,from=0,to=30),lty=2)

Try other values of h. How large must it be before a unimodal estimate is obtained?
Which theory do you think most plausible? Discuss how you might construct a test of
the theory predicting unimodality.

(Section 7.1.2; Paulsen and Heggelund, 1994; Silverman, 1981)

2. (a) Consider a kernel density estimator (7.4) Show that its exact integrated mean squared
error (7.9) may be expressed as

IMSE(h) =
1

nh

∫
w(u)2 du + (1 − n−1)

[∫
{(wh ∗ f)(u)}2 du

]2

−2

∫
(wh ∗ f)(u)f(u) du +

∫
f(u)2 du,
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where wh(u) = h−1w(u/h) and (wh ∗ f)(u) =
∫

wh(x − y)f(y) dy is the convolution of
wh and f .

(b) Mixtures of normal densities

f(y) =

k∑

i=1

πi

σi
φ

(
y − µi

σi

)

can take a wide variety of forms and are useful because exact calculations for kernel
density estimation are possible. To see this, show (i) that1

1

hσ

∫
φ

(
y − u

h

)
φ

(
u − µ

σ

)
du =

1

(σ2 + h2)1/2
φ

{
y − µ

(h2 + σ2)1/2

}
,

and (ii) deduce that IMSE(h) for a normal mixture f using the normal kernel wh(u) =
h−1φ(u/h) equals

1

2nhπ1/2
+ (1 − n−1)U(h, 2) − 2U(h, 1) + U(h, 0),

where

U(h, q) =

k∑

i=1

k∑

l=1

πiπl

(σ2
i + σ2

l + qh2)1/2
φ

{
µi − µl

(σ2
i + σ2

l + qh2)1/2

}
.

(iii) Otherwise, or by explicit calculation, show that the integrated squared bias of f̂
equals U(k, 2) − 2U(k, 1) + U(k, 0). Does the variance depend on n? Does the bias?

(c) Here is some code to make normal mixture densities, followed by plots of five example
densities:

mix <- function(y, pi=1, mu=0, sig=1)

{ out <- rep(0,length(y))

for (i in 1:length(pi)) out <- out + pi[i]*dnorm(y,mu[i],sig[i])

out }

y <- seq(from=-3,to=3,length=1000)

plot(y,mix(y),type="l",ylab="f(y)") # standard normal

pi2 <- c(1/5,1/5,3/5); mu2 <- c(0,1/2,13/12); sig2 <- c(1,2/3,5/9)

plot(y,mix(y,pi2,mu2,sig2),type="l",ylab="f(y)") # skewed unimodal

pi3 <- c(1/2,1/2); mu3 <- c(-3/2,3/2); sig3 <- c(1/2,1/2)

plot(y,mix(y,pi3,mu3,sig3),type="l",ylab="f(y)") # separated bimodal

pi4 <- c(3/4,1/4); mu4 <- c(0,3/2); sig4 <- c(1,1/3)

plot(y,mix(y,pi4,mu4,sig4),type="l",ylab="f(y)") # asymmetric bimodal

pi5 <- c(1/2,rep(0.1,5)); mu5 <- c(0,(0:4)/2-1); sig5 <- c(1,rep(0.1,5))

plot(y,mix(y,pi5,mu5,sig5),type="l",ylab="f(y)") # claw

sim.mix simulates from such a density. To use it to generate data and then estimate
using a kernel estimator, with bandwidth chosen by cross-validation:

library(MASS)

sim.mix <- function(n, pi=1, mu=0, sig=1)

{ i <- sample(1:length(pi),size=n,replace=TRUE,prob=pi)

1Recall Exercise 3.2.16 and note the hint for Exercise 7.1.5.
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rnorm(n,mu[i],sig[i]) }

y <- sim.mix(1000, pi3, mu3, sig3)

plot(density(y,ucv(y)),type="l") # cross-validation bandwidth

lines(density(y,bcv(y)),type="l",lty=2) # biased cross-validation

lines(density(y,width.SJ(y)),type="l",lty=3) # Sheather-Jones bandwidth

Try repeating the last four lines with different n and mixtures, and seeing how well the
three bandwidth estimates do. Which do you prefer?

To see how the theoretical integrated squared bias and integrated mean squared error
depend on h, n and the mixture:

u <- function(h, q, pi=1, mu=0, sig=1)

{ k <- length(pi)

out <- 0

for (i in 1:k) for (j in 1:k)

out <- out + pi[i]*pi[j]*dnorm(mu[i]-mu[j],0,sqrt(sig[i]^2+sig[j]^2+q*h^2))

out }

isb <- function(h, pi=1, mu=0, sig=1)

u(h,2,pi,mu,sig) - 2*u(h,1,pi,mu,sig) + u(h,0,pi,mu,sig)

imse <- function(h, n, pi=1, mu=0, sig=1)

1/(n*h*3.545) + isb(h,pi,mu,sig) - u(h,2,pi,mu,sig)/n

log.h <- seq(from=-1.2,to=0.2,length=20) # h best viewed on log scale

isb1 <- isb( 10^log.h )

imse1 <- imse( 10^log.h, 100 ) # N(0,1), sample size 100

plot(log.h, isb1,type="l")

lines(log.h, imse1)

lines(log.h, imse1-isb1)

Note how the bias and variance balance each other out. Try repeating this with other n
and the other mixtures above.

The IMSE for the fifth mixture (the claw) can have local minima. To see this:

isb5 <- isb(10^log.h,pi5,mu5,sig5)

imse5 <- imse(10^log.h,53,pi5,mu5,sig5) # n = 53

plot(log.h, isb5,type="l")

lines(log.h, imse5)

lines(log.h, imse5-isb5)

Try this with smaller and larger n. Try simulating from this density, and using the two
bandwidths. To what do they correspond? What do you conclude?

(Section 7.1.2; Marron and Wand, 1992; Sheather and Jones, 1991)

3. beetle contains the numbers of Japanese beetle larvae in the upper foot of soil of a 18×8
array of foot-square plots in a field of maize. The maize plants were planted in rows four
feet apart.

A possible model is that these counts are independent Poisson variables. Discuss what
alternatives might be sensible here, and outline how you might construct Monte Carlo
exact tests against them. Perform tests aaginst what seem to you the most plausible
alternatives, and state carefully your conclusions.

(Section 7.3)
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4. Show that the exact upper α confidence limit µα for the mean µ of a Poisson variable Y
satisfies

Pr(Y ≤ y;µ) =

y∑

u=0

µu

u!
e−µ,

and by arguing that this is the probability of seeing y or fewer events in the interval
[0, µ] in a Poisson process of unit rate, show that µα is the 1 − α quantile of the gamma
distribution with shape parameter y + 1 and unit scale, g1−α

y+1 , say. Show that the lower
α confidence limit is gα

y when y > 0 and zero otherwise. Hence check that the functions
exact and iexact below give the limits of the exact interval and indicate whether µ is
contained in it. Try exact for a few values of y.

exact <- function(y, a=0.025)

c(switch(1+(y>0),0,qgamma(a,y)),qgamma(1-a,y+1))

iexact <- function(y, mu, a=0.025)

((ppois(y,mu)>a)&(ppois(y-1,mu)<1-a))

Find the score, maximum likelihood and signed likelihood ratio statistics for tests on µ,
and check this code:

mle <- function(y, mu) ifelse(y>0,(y-mu)/sqrt(y),-Inf)

z <- function(y, mu)

sign(y-mu)*ifelse(y>0,sqrt(2*(y*log(y/mu)+mu-y)),sqrt(mu))

zs <- function(y, mu) z(y, mu)+log(mle(y,mu)/z(y,mu))/z(y,mu)

We now compute the exact coverages for these intervals with 0 ≤ µ ≤ 50.

y <- 0:400; eps <- 10^(-8); a <- 0.025; za <- qnorm(1-a)

mu <- seq(from=eps,to=50,length=1000)

cov <- matrix(NA,length(mu),4)

for (i in 1:length(mu)) {

cov[i,1] <- sum( dpois(y,mu[i])[iexact(y,mu[i])] )

cov[i,2] <- sum( dpois(y,mu[i])[abs(mle(y,mu[i]))<=za] )

cov[i,3] <- sum( dpois(y,mu[i])[abs(z(y,mu[i]))<=za] )

cov[i,4] <- sum( dpois(y,mu[i])[abs(zs(y,mu[i]))<=za] ) }

plot(mu,cov[,1],type="l",ylim=c(0.7,1),ylab="Exact coverage")

abline(h=1-2*a) # nominal level

lines(mu,cov[,2],lty=2) # MLE

lines(mu,cov[,3],lty=3) # signed LR statistic

lines(mu,cov[,4],lty=4) # z*

Are the qualitative conclusions the same as those in Example 7.38?

(Section 7.3.4)
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Chapter 8

Linear Models

1. trees contains data on the volume, height and girth (diameter) of 31 felled black cherry
trees; girth is measured four feet six inches above ground. The problem is to find a simple
formula for predicting volume from height and girth.

data(trees)

pairs(trees,panel=panel.smooth)

pairs(log(trees),panel=panel.smooth)

coplot generates conditioning plots, in which the relationship between two variables is
displayed conditional on subsets of values of other variables. This is useful to see if the
relationship is stable over the range of other variables. To assess this for the relationship
of log volume and log girth, conditional on height:

attach(trees)

coplot(log(Volume)~log(Girth)|Height,panel=panel.smooth)

Try this on the orginal scale also.

For an initial fit, we take a linear model and assess model fit using diagnostic plots:

summary(fit <- glm(Volume~Girth+Height))

plot.glm.diag(fit)

What do you make of the fit?

To assess the possibility of transformation:

library(MASS)

boxcox(fit)

Both λ = 1 and λ = 0 lie outside the confidence interval, though the latter is better sup-
ported. One possibility is to take λ = 1/3, corresponding to response Volume1/3. What
transformations for Girth and Height are then needed for dimensional compatibility?
Fit this model, give interpretations of the parameter estimates, and discuss its suitability.

An alternative is to suppose that a tree is conical in shape, in which case Volume ∝
Height × Girth2. Equivalently, we fit
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summary(fit <- glm(log(Volume)~log(Girth)+log(Height)))

library(boot)

plot.glm.diag(fit)

Are the parameter estimates consistent with this model? Does it fit adequately? What
advantage has it over the others for prediction of future volumes?

(Chapter 8; Atkinson, 1985, p. 63)

2. salinity contains n = 28 observations on the salinity of water in Pamlico Sound, North
Carolina. The response sal is the bi-weekly average of salinity. The next three columns
contain values of the covariates, respectively a lagged value of salinity lag, a trend
indicator trend, and the river discharge dis. Using the techniques of the previous
problem as a guide, find a model suitable for prediction of salinity from the covariates.
The data contain at least one outlier.

(Chapter 8; Ruppert and Carroll, 1980; Atkinson, 1985, p. 48)

3. burt contains IQ scores y and x for pairs of identical twins, the first raised by foster par-
ents and the second raised by natural parents.1 Cases are divided into groups according
to parents’ social class, A, B and C, labelled 1, 2 and 3. The general objective is to
assess the impact of social class on IQ, and in particular the effect of environment. A
simple approach is to regard the second twin’s IQ x as a standard with which to com-
pare the first twin’s IQ, y. Then the simplest models are those relating y to x through
linear equations of the form y = α + βx + ε, where ε is a random error and α and β
are coefficients which may depend on social class. In the absence of environmental and
social class effects, one would expect that α = 0 and β = 1. To inspect the data:

attach(burt)

par(pty="s")

plot(x,y,type="n",xlim=c(60,140),ylim=c(60,140))

text(x,y,class,cex=0.8)

abline(0,1,lty=2)

Do linear models seem reasonable? To fit the full model, and print the corresponding
analysis of variance table:

burt.glm <- glm(y~x*class,data=burt)

anova(burt.glm,test="F")

library(boot)

burt.diag <- glm.diag(burt.glm)

The analysis of variance suggests no effect of class after adjusting for x and no interaction
of class and x. To examine the coefficients, we reformulate the model in form y =
αc + βcx + ε:

1Cyril Burt (1883–1971) was educated at the universities of Oxford and Würzburg, and worked for Lon-
don County Council and later the University of London. He was the first psychologist to be knighted. He
founded the field of educational psychology in Britain, helped to establish the Eleven-Plus testing program,
expanded the statistical technique of factor analysis, and investigated differences in intelligence among social
classes, gender and race. He was a strong advocate for the view that intelligence is an inherited character-
istic, though there is good evidence that he fabricated data on identical twins to support his position; see
www.indiana.edu/∼intell/burt.shtml.
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summary(fit <- glm(y~class+x:class-1))

which shows striking similarities among the β̂c.

To fit and examine the model y = α + βx + ε:

summary(fit <- glm(y~x))

plot.glm.diag(fit)

What do you conclude?

(Section 8.5)

4. When is a condition number worrying? For a small simulation to compare with Ex-
ample 8.28, we consider the condition number using the correlation matrix of the covari-
ates.

cond <- function(X) # computes condition number

{ X <- as.matrix(X)

ei <- eigen(cor(X))$values

sqrt(max(ei)/min(ei)) }

cond(cement[,1:4]) # condition number for cement data

R <- 1000

sim.cond <- rep(NA,R)

for (r in 1:R) sim.cond[r] <- cond(matrix(rnorm(13*4),13,4))

summary(sim.cond)

Modify cond for the other definitions of condition number, and repeat the experiment.
What do you conclude about the cement data?

(Section 8.7.2)

5. To assess the properties of stepwise model selection methods, we use the function sim,
which generates data with n responses that are independent of the five covariates. gen-
erates

sim <- function(n)

{ X <- scale(matrix(rnorm(n*5),n,5))

y <- 4+rnorm(n)

data.frame(y,x1=X[,1],x2=X[,2],x3=X[,3],x4=X[,4],x5=X[,5]) }

We now repeat stepwise model selection R times, and count how often the correct model
(with just one covariate, the overall mean) is obtained:

library(MASS)

R <- 100; n <- 10; co <- rep(NA,R)

for (r in 1:R) {

s <- step(lm(y~x1+x2+x3+x4+x5,data=sim(n)),direction="both",trace=0)

co[r] <- length(coef(s)) }

table(co) # frequencies of number of covariates

Note the high proportion of fits with three or more spurious covariates. Repeat this with
n = 20, 50, 100. Do the properties of step improve? Discuss your findings.

(Section 8.7.3)
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6. pollution contains data on weather (variables 1–3, 15), socio-economic factors (variables
4–11), and pollution (variables 12–14) for 60 Standard Metropolitan Statistical Areas in
the USA. The response (variable 16) is the age-adjusted mortality rate from all causes,
expressed as deaths per 100,000 persons. For an initial look at the data:

pairs(pollution)

pairs(pollution[,c(1:3,15:16)]) # association of mortality with weather

pairs(pollution[,c(4:11,16)]) # and social factors

pairs(pollution[,c(12:14,16)]) # and pollution measures

Examine these plots carefully, and comment. Are there outliers? Should covariates
and/or the response be transformed? What difficulties might arise in accounting for the
effect of air pollution on mortality?

Try using step to eliminate weather and social variables from the regression:

fit <- step(glm(mort~.-hc-nox-so,data=pollution))

boxcox(fit)

plot.glm.diag(fit) # model adequate?

fit <- update(fit,log(mort)~.) # try log transform of response

plot.glm.diag(fit) # model adequate?

Should all the variables be included? Try various models, choose one or perhaps a few
that you think are similarly adequate, give careful interpretations of the covariate effects,
and discuss their plausibility. Check the adequacy of your model.

For an initial assessment of the relation between the pollution variables and mortality,
after adjustment for the other variables, we use resid and lm to make added variable
plots:

pairs(resid(lm(cbind(log(mort),hc,nox,so)~.,data=pollution)))

The top line of this scatterplot matrix contains the added variable plots for log mortality
and the pollution variables. What difficulties do you foresee for regression on all three
pollution variables? Are outliers present? Try adding in these variables, or suitable
transformations of them, to your chosen best model (or models) from above, and discuss
the interpretation and fit of the various models.

One possible approach to dealing with some of the problems above would be to use ridge
regression. Try using the ridge.lm function, for example by:

rfit <- lm.ridge(mort~.-hc-nox,data=pollution,lambda=seq(0,20,0.01))

plot(rfit)

select(rfit)

Discuss the interpretability of the resulting parameter estimates.

Try using the functions lqs in library(lqs) for least trimmed squares regression, and
rlm in library(MASS) for robust M-estimation, and see if your conclusions change.

(Section 8.7; McDonald and Schwing, 1973)
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Chapter 9

Designed Experiments

1. chicks contains the data of Table 9.8. To fit the linear model given in Example 9.4
without first eliminating the pair parameters by differencing, display the analysis of
variance table, and view the estimates:

chicks # print data

summary(aov(y~Pair+Treat,data=chicks)) # analysis of variance

options(contrasts=c("contr.treatment","contr.poly"))

chicks.lm <- lm(y~Pair+Treat,data=chicks) # fit linear model

summary(chicks.lm,correlation=F) # summary w/o correlations of estimates

The options statement gives the parametrization used in the example. Note the para-
meter estimates for the amino acids and their standard errors, and the estimate of error
variance.

To perform the intra- and inter-block analyses directly, we make two new dataframes
chick1 and chick2:

attach(chicks)

i <- 2*c(1:15)

chick1 <- data.frame(y=y[i]-y[-i],

His=(Treat[i]=="His-")-(Treat[-i]=="His-"),

Arg=(Treat[i]=="Arg-")-(Treat[-i]=="Arg-"),

Thr=(Treat[i]=="Thr-")-(Treat[-i]=="Thr-"),

Val=(Treat[i]=="Val-")-(Treat[-i]=="Val-"),

Lys=(Treat[i]=="Lys-")-(Treat[-i]=="Lys-"))

chick2 <- data.frame(y=y[-i]+y[i],

His=(Treat[i]=="His-")+(Treat[-i]=="His-"),

Arg=(Treat[i]=="Arg-")+(Treat[-i]=="Arg-"),

Thr=(Treat[i]=="Thr-")+(Treat[-i]=="Thr-"),

Val=(Treat[i]=="Val-")+(Treat[-i]=="Val-"),

Lys=(Treat[i]=="Lys-")+(Treat[-i]=="Lys-"))

detach("chicks")

chick1 # new data frame suitable for intra-block fit

chick1.lm <- glm(y~Arg+His+Thr+Val+Lys-1,data=chick1)

summary(chick1.lm)

chick2 # new data frame suitable for inter-block fit

chick2.lm <- glm(y~Arg+His+Thr+Val+Lys,data=chick2)

summary(chick2.lm)
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Again note the estimates and their standard errors. Why are the estimates of error
variance different for these fits and that above?

To compute the intra-block effects on the original scale, and 95% confidence intervals:

nu <- 10

est <- matrix(coef(chick1.lm),5,3)

chick1.sum <- summary(chick1.lm)

se <- sqrt(diag(chick1.sum$cov.unscaled*chick1.sum$dispersion))

10^( est + outer(se*qt(0.975,df=nu),c(0,-1,1)) )

For the pooled analysis:

t1 <- coef(chick1.lm)

s1 <- sqrt(diag(chick1.sum$cov.unscaled*chick1.sum$dispersion))

chick2.sum <- summary(chick2.lm)

t2 <- coef(chick2.lm)[-1]

s2 <- sqrt(diag(chick2.sum$cov.unscaled*chick2.sum$dispersion))[-1]

w <- 1/s1^2/(1/s1^2+1/s2^2)

est <- w*t1 + (1-w)*t2

s <- sqrt(1/(1/s1^2+1/s2^2))

cbind(est,s)

To compute the degrees of freedom using the calculation in Exercise 9.2.3 and then to
compute the estimates and confidence intervals on the original scale:

n1 <- 10; n2 <- 9; s1 <- s1[1]; s2 <- s2[1]

nu <- (s1^2+s2^2)^2/(s1^4/n1+s2^4/n2)

nu # equivalent df for variance estimate

10^( est + outer(s*qt(0.975,df=nu),c(0,-1,1)) )

The balanced nature of the experiment is seen by computing the XTX matrix for the
intra-block model, and its inverse:

X <- as.matrix(chick1[,-1])

X

crossprod(X)

solve(crossprod(X))

The effect of a lack of balance is seen by dropping certain pairs:

solve(crossprod(X[-15,]))

Explain the change to the matrix (XTX)−1 in terms of which treatment pairs have here
been dropped from the model.

(Section 9.2; Cox and Snell, 1981, pp. 95–97)

2. An experiment was conducted with millet to determine the optimum distance between
plants in rows; the rows were one foot apart. The treatments were distances 2, 4, 6, 8
and 10 inches between plants. The design was a 5 × 5 Latin square, and the data in
millet are the average yields (gm) of three central rows 15 feet long after allowing for
discards, from each plot.

To inspect the data:
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attach(millet)

par(mfrow=c(2,2))

plot(row,y)

plot(col,y)

plot(dist,y)

What do you infer? To fit the usual linear model:

millet.lm <- lm(y~row+col+dist,data=millet)

aov(millet.lm)

Verify that the analysis of variance is unchanged by fitting the terms in a different order,
but not when the intercept is omitted — for example, compare the analyses of variance
for the model above and

anova(lm(y~row+col+dist-1,data=millet),test="F")

anova(lm(y~dist+col+row-1,data=millet),test="F")

Carefully interpret and compare the estimates for the models

summary(millet.lm,correlation=F)

summary(lm(y~dist+row+col-1,data=millet),correlation=F)

and explain why the standard error for each of the distance effects is (2s2/5)1/2 for the
first fit but not for the second.

To plot residuals, identify outliers, and refit without case 25, for example:

screen(4)

plot(fitted(millet.lm),resid(millet.lm))

identify(fitted(millet.lm),resid(millet.lm))

millet.lm <- lm(y~row+col+dist,data=millet,subset=c(-25))

How does dropping the outlier(s) affect the analysis of variance, the estimates, and their
standard errors?

As in Example 9.12, the levels of distance d are quantitative, and it is useful to fit a
polynomial in d:

millet.lm <- lm(y~poly(dist,4)+col+row,data=millet)

summary(millet.lm,correlation=F)

The coefficients here suggest that a quadratic polynomial will be adequate, and for ease
of interpretation we do not fit the orthonormalized polynomials that would be generated
by poly(dist,2):

d <- as.vector(dist)

d2 <- d^2

millet.lm <- lm(y~d+d2+col+row,data=millet)

fit <- fitted(millet.lm)

md <- tapply(fit,dist,mean)

screen(3,new=F)

lines(2*c(1:5),md)

points(2*c(1:5),md,pch="+")
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Use the coefficients of this polynomial model to estimate the value of d that maximizes
the response; see Exercise 9.3.3.

How does the outlier affect this analysis?

(Section 9.3)

3. The data in marking are from an experiment designed to compare how different markers
assessed examination scripts, in which four markers took part. Normally each marker
had a different batch of scripts, but for the experiment one script was taken at random
from each batch and replaced after three copies of it had been made. The three copies
were sent to the other three markers who assessed them, while the original was replaced
and assessed in the usual way. Each of the four copies was therefore assessed by a
single marker, but the three markers who had a copy knew that the script was part of
the experiment, while the person marking the original did not know it to be part of
the experiment. The experiment was repeated at another examination, with the same
examiners, but different scripts. Analyse the data and report on your conclusions.

(Section 9.3; Lindley, 1961)

4. The data in teak are from an experiment on the growth of teak plants, in which two
planting methods, pits (A) and crowbar holes (B), and three root lengths (4, 6 and 8
inches) were used. Each of the 2× 3 factor combinations was applied to a plot chosen at
random within each of four blocks, with the response y the average height in inches of
the 50 plants grown on each plot. Analyse the data and report on your conclusions.

(Section 9.2)
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Chapter 10

Nonlinear Models

1. shuttle contains the data in Table 1.3 on O-ring failures for the space shuttle. To fit a
binomial logistic regression model with covariate temperature:

data(shuttle)

fit <- glm(cbind(r,m-r)~temperature,data=shuttle,binomial)

anova(fit)

summary(fit)

Try fitting with and without both covariates, and compare your output with Examples 4.27
and 4.33.

To assess model fit, try plot.glm.diag(fit). Do you find these diagnostics useful?

(Sections 10.1–10.4; Dalal et al., 1989)

2. bliss contains data on mortality of flour-beetles as a function of dose of a poison. To
plot the death rates:

bliss

attach(bliss)

plot(log(dose),r/m,ylim=c(0,1),ylab="Proportion dead")

fit <- glm(cbind(r,m-r)~log(dose),binomial)

summary(fit)

points(log(dose),fitted(fit),pch="L")

Does the fit seem good to you? Try again with the probit and cloglog link functions,
for example:

fit <- glm(cbind(r,m-r)~log(dose),binomial(cloglog))

points(log(dose),fitted(fit),pch="C")

Which fits best? Give a careful interpretation of the resulting model.

(Sections 10.1–10.4; Bliss, 1935)

3. Table 10.11 and ulcer give data to compare five new surgeries (A, B, M, N, S) for
stomach ulcer with a previous surgery (C), ‘success’ being non-occurrence of recurrent
bleeding. Here is a likelihood analysis of the data, treated as 40 2 × 2 tables, in which
we first fit a single parameter for all five new surgeries, and then separate parameters for
each:
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attach(ulcer)

ulcer

fit <- glm(cbind(r,m-r)~table+(treat!=" C")+treat,binomial,data=ulcer)

anova(fit,test="Chisq")

Note the large residual deviance and the apparent lack of evidence for differences among
the new surgeries. For a look at diagnostic plots:

# library(boot) # needs to be replaced eventually - errors for Pearson residual

diag <- glm.diag(fit)

glm.diag.plot(fit)

There are two obvious outliers, and printing diag$res shows that trial 39, which has
100% success rate for the new therapy and 0% for the old one, contributes them both.
For now we ignore this, and make an adjustment for overdispersion:

fit <- glm(cbind(r,m-r)~table+(treat!=" C")+treat,quasibinomial)

anova(fit,test="Chisq")

How does the new analysis of deviance table compare with the old one? Do conclusions
about significance of effects change?

We now analyse the data without study 39:

i <- c(1:80)[-c(39,79)]

fit <- glm(cbind(r,m-r)~table+(treat!=" C")+treat,quasibinomial,subset=i)

anova(fit,test="Chisq")

Now there seem to be differences among the new treatments, even after adjusting for the
overdispersion. To see the coefficients:

fit <- glm(cbind(r,m-r)~table+treat,quasibinomial,subset=i)

s <- summary(fit) # SEs adjusted for overdispersion

coef(s)

Note the estimate and standard error for study 20. Check the data to see what has
happened. Note also the coefficients for the treatment effects: what do you conclude
about treatment S? Note that trial 39 has treatment S. Whence does the evidence that
S is the same as the other treatments come?

Now we merge levels A, B, N, and M of the factor treat, and refit:

tr <- as.character(ulcer$treat)

tr[tr=="B"] <- "A" # merge levels A, B, N, M of treat

tr[tr=="N"] <- "A"

tr[tr=="M"] <- "A"

tr <- factor(tr) # factor with merged levels

fit <- glm(cbind(r,m-r)~table+tr,quasibinomial,subset=i)

anova(fit,test="Chisq")

s <- summary(fit)

coef(s)
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Does this model fit as well as the one with the original factors? Give 95% confidence
intervals for the effect of the combined treatments and of S, on the odds scale.

Discuss how you might assess if the variance function is suitable.

(Sections 10.1–10.4, 10.6; Sacks et al., 1990; Efron, 1996)

4. In 1961 and 1962 an experiment was conducted in Sweden to assess the effect of a speed
limit on the accident rate on motorways. The experiment was conducted on 92 days in
each year, matched so that day j in 1961 was comparable to day j in 1962. On some
days the speed limit was in effect and enforced, and not on other days. The number of
accidents was recorded daily.

(a) Let Yij be the number of accidents on day j in 196i, and let Iij indicate whether the
speed limit was in effect that day. A simple model is that Y1j has a Poisson distribution
with mean λj exp(βI1j), while the corresponding mean for 1962 is λj exp(α + βI2j).
Show that there is a cut in the likelihood, and deduce that inference for α and β may
be performed using the binomial conditional distribution of Y1j given Y1j + Y2j , for
j = 1, . . . , 92; give this distribution.

(b) The data are in limits. The following code fits and displays the binomial model:

data(limits)

limits.bin <- glm(cbind(y1,y2)~delta,binomial,data=limits)

summary(limits.bin)

plot.glm.diag(limits.bin)

To fit the Poisson model:

attach(limits)

acc <- c(y1,y2)

d <- c(i61,i62)

detach("limits")

year <- rep(c(1,2),c(92,92))

day <- factor(rep(1:92,2))

limits.poi <- glm(acc~day+year+day,poisson)

summary(limits.poi)

Compare the output from the two fits, and verify that the estimates of the year and
speed limit effects and their standard errors are equal.

(Sections 10.4–10.5; Svensson, 1981)

5. lizards contains the numbers of two species of lizard, grahami and opalinus, observed
in Whitehouse, Jamaica, at two different heights, two perch diameters, in sun or shade,
at three times of the day. The data were collected by observing occupied perches and
recording the appropriate height, perch diameter, and so forth.

Interest lies in the difference in habitat choice between the species. Analyze the data by
approaches (i)-(iii) below, comparing their relative advantages and disadvantages, and
paying particular attention to the interpretation of the models you choose.

(i) A conventional analysis of variance.

(ii) A generalized linear model with binomial error, based on the probability that a
perch is occupied by one species, given that it is occupied. Discuss the similarities and
disssimilarties with (i).
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(iii) A log-linear model.

(Sections 10.4–10.5; Bishop et al., 1975, p. 164)

6. Titanic contains data on survival after the shipwreck of the Titanic. How does survival
depend on social class, age (adult/child), and sex?

(Sections 10.4–10.5; Simonoff, 1998)

7. seeds contains data on the germination of seeds in a 2× 2 factorial experiment in which
two types of seed and two root extracts, bean and cucumber, were compared. Seeds were
placed on a plate containing root extract and the numbers subsequently germinating
were counted. For an initial fit of a standard binomial logistic regression:

data(seeds)

fit <- glm(cbind(r,m-r)~seed*root,binomial,data=seeds)

anova(fit,test="Chisq")

plot.glm.diag(fit)

Both residual deviance and residuals are over-dispersed. To allow for this:

fit <- glm(cbind(r,m-r)~seed*root,quasibinomial,data=seeds)

anova(fit,test="F")

summary(fit)

plot.glm.diag(fit)

To fit a beta-binomial model (Exercise 10.6.4), we set up a negative log likelihood for a
random sample from the distribution, parametrized in terms of µ and δ:

nlogL <- function(th, r, m)

{ # computes negative log likelihood, ignoring constant terms

mu <- th[1]

del <- th[2]

a <- mu*(1/del-1)

b <- (1-mu)*(1/del-1)

sum( lbeta(a,b)-lbeta(r+a,m-r+b) ) }

init <- c(0.5,0.1)

nlogL( init, r[1:5], m[1:5] )

fit <- nlm(nlogL, init, hessian=TRUE, r=r[1:5], m=m[1:5]) # fit to first group

fit$minimum # negative of maximised log likelihood

fit$estimate # parameter estimates

sqrt(diag(solve(fit$hessian))) # and their standard errors

Find the estimates and standard errors for the other groups. Do you think that they are
a good summary of the data in this case? Do the data support constant δ for all four
groups? Discuss your findings.

(Section 10.6; Crowder, 1978; Cox and Snell, 1989, Section 3.2)

8. coal contains dates of coal-mining disasters in Britain from 1850–1962, in which more
than ten people were killed. To see the cumulative number of disasters, and the numbers
per year:
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data(coal)

attach(coal)

par(mfrow=c(1,2))

plot(date,1:length(date),type="s",ylab="Cumulative number of accidents")

cc <- hist(date,breaks=1850:1963,main="Accidents per year, 1850-1962")

Do the times look homogeneous? When does change occur?

We assume that the data are a realization of an inhomogeneous Poisson process, and try
estimating the rate using a generalized additive model:

library(mgcv)

fit <- gam(cc$counts~s(cc$mids),poisson) # automatic choice of df

fit

lines(cc$mids,fitted(fit))

fit <- gam(cc$counts~s(cc$mids,df=3),poisson) # 3 degrees of freedom

fit

lines(cc$mids,fitted(fit),lty=2)

Legislation on safety in mines was strengthened in 1872, and legislation on liability of
employers for accidents was strengthened in 1878 and 1897. How does this knowledge
affect the type of model you might fit? Try fitting suitable models, and discuss their fit
(see also Practical 5.3).

What other factors, external to the data here, might affect the numbers of disasters?

(Section 10.7; Maguire et al., 1952; Jarrett, 1979)

9. urine contains data in which the binary response indicates the presence or not of calcium
oxalate crystals in 79 samples of urine; there are six covariates related to chemical and
physical properties of the samples. Cases 1 and 55 have missing values. Analyse the data
and report on your conclusions, paying particular attention to the interpretation of any
final models. You might start from:

data(urine)

pairs(urine)

fit <- step(glm(r~.-case,subset=-c(1,55),data=urine,binomial))

Are transformation of covariates or smoothing needed?

(Section 10.4, 10.7; Andrews and Herzberg, 1985, pp. 249–251)

10. To fit the proportional hazards model to the AML data of Practical 5.2:

library(survival)

data(aml)

fit <- coxph(Surv(time,cens)~group,data=aml)

summary(fit)

plot(survfit(fit)) # estimated baseline survivor function

Compare this fit with those Practical 5.2, and discuss the reasons for any differences.

(Section 10.8; Miller, 1981, p. 49)
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11. To analyze the motorette data of Table 11.10,

library(survival)

data(motorette)

fit <- survfit(Surv(y, cens)~x,data=motorette)

plot(fit,lty=1:4)

To fit models with Weibull responses:

fit.wei <- survreg(Surv(y, cens)~log(x),data=motorette)

summary(fit.wei)

fit.wei <- survreg(Surv(log(y), cens)~log(x),data=motorette)

summary(fit.wei)

Try variants of this model, using for example the log-logistic distribution, and discuss
how you might construct residuals to assess their fit.

(Section 10.8; Nelson and Hahn, 1972)

12. pbc contains the data on primary biliary cirrhosis from Example 10.39. Analyse the data
and report on your conclusions, starting perhaps from:

library(survival)

data(pbc)

pbcm <- pbc[(pbc$trt!=-9),] # now clean up missing data

pbcm$copper[(pbcm$copper==-9)] <- median(pbcm$copper[(pbcm$copper!=-9)])

pbcm$platelet[(pbcm$platelet==-9)] <- median(pbcm$platelet[(pbcm$platelet!=-9)])

attach(pbcm) # new dataframe without missing data

plot(survfit(Surv(time,status)~trt),ylim=c(0,1),lty=c(1,2),

ylab="Survival probability",xlab="Time (days)")

plot(survfit(coxph(Surv(time,status)~trt+strata(sex))),ylim=c(0,1),

lty=c(1,2),ylab="Survival probability",xlab="Time (days)")

lines(survfit(coxph(Surv(time,status)~trt)),lwd=2)

Now try adding the covariates. Do you agree with the conclusions of Example 10.39?

(Section 10.8; Fleming and Harrington, 1991)
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Chapter 11

Bayesian Models

1. When a coin is spun on its edge, the proportion of tails may differ appreciably from 1
2

due to irregularities that do not matter when the coin is tossed in the air.

(a) Find and inspect a coin, and without spinning it, use a mixture of beta densities
to give your personal prior for the likely proportion of heads when it is spun, briefly
outlining your reasoning. You may find it useful to compare plots of priors. You can do
this as follows in R:

coin.spin <- function( para, r=0, n=0, n.points=199)

{ # compute posterior density for n coin spins of which r heads,

# with prior in para

para <- as.matrix(para)

para[,1] <- para[,1]/sum(para[,1])

k <- nrow(para)

w <- rep(0,k)

for (i in 1:k)

w[i] <- (para[i, 1] * beta(para[i, 2] + r, para[i, 3] + n - r))/

beta(para[i, 2], para[i, 3])

para[,1] <- w/sum(w)

x <- c(1:n.points)/(n.points +1)

y <- rep(0,n.points)

for (i in 1:k)

y <- y + para[i,1]*dbeta(x, shape1=para[i,2]+r, shape2=para[i,3]+n-r )

list( x=x, y=y )

}

para <- matrix( c(0.5, 10, 20, 0.5, 20, 10), nrow=2, ncol=3, byrow=TRUE)

prior <- coin.spin(para)

plot(prior, xlab="theta",ylab="PDF", type="l",ylim=c(0,6))

The matrix para consists of the probabilities attached to each component of the mixture
(first column) and the parameters a and b for the mixture components (second and third
columns); the number of rows of para is the number of components of the mixture. The
function coin.spin calculates the corresponding mixture density.

(b) Now find two or three other people and try to produce a group prior for the proportion
of heads by combining your priors from (a). You might try to agree on a suitable mixture
by discussion, or to use a mixture of your individual priors. Briefly summarize the
difficulties you see in finding a prior that satisfactorily represents group beliefs.

44



(c) Take your coin and use the number of heads recorded in 10 spins to update your prior
from (a). If you get r = 4 heads in the n = 10 spins:

post <- coin.spin(para, r=4, n=10)

lines(post, lty=2)

Produce a graph that compares your prior and posterior densities for θ.

(d) Can you use the information from your co-investigators’ spins to further update
your results from (c)? To what extent do your results support the initial assertion that
spinning gives asymmetric outcomes?

(Sections 11.1, 11.2)

2. (a) Suppose that y is the number of events occurring when a Poisson process of rate λ is
watched for a period of length x. Show that if λ has a gamma distribution with shape
and scale parameters α and β, the marginal density of y is generalized negative binomial,

f(y | α, β) =
Γ(y + α)

y!Γ(α)
(1 − π)yπα, y = 0, 1, 2, . . . ,

where π = β/(β + x).

(b) Now suppose that data pairs (x1, y1), . . . , (xn, yn) are available, and that the prior
density for β is gamma with shape and scale parameters ν and φ; suppose also that α is
known. The prior density of β when ν = φ = 1 is plotted as follows:

par(mfrow=c(2,2))

beta <- seq(from=0,to=10,length=1000)

nu <- phi <- 1

f <- dgamma(beta*phi,shape=nu)*phi

plot(beta,f,xlab="beta",ylab="Prior",type="l")

cloth give the numbers of faults y in lengths x of cloth, for which a reasonable model
is given in (a). Compute the Laplace approximation for the posterior density of β, and
check that the function below calculates this approximation:

poi.beta.laplace <- function( data, alpha=get.alpha(data), phi=1, nu=0.1,

beta=seq(from=0,to=7,length=1000) )

{ # compute Laplace approximation

h <- function(x, P)

P$phi*x - (P$n*P$alpha+P$nu-1)*log(x) + sum( (P$alpha+P$y)*log(P$X+x) )

y <- data$y

X <- data$x

n <- length(data$y)

P <- list(phi=phi, nu=nu, n=n, y=y, X=X, alpha=alpha)

h.min <- optim(par=1, fn=h, method="L-BFGS-B",

hessian=TRUE, lower=0, upper=Inf, P=P)

u <- h.min$parameters

conv <- h.min$message

H2 <- det(h.min$hessian)

out <- sum( lgamma(alpha+y)-lgamma(y+1)-lgamma(alpha)+y*log(X)) -

lgamma(nu) + nu*log(phi) -
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h.min$value+0.5*log( 2*pi/H2 )

PDF <- beta

for (i in 1:length(beta))

PDF[i] <- - h(beta[i],P) - (- h.min$value + 0.5*log( 2*pi/H2 ) )

int <- sum(exp(PDF))*(beta[2]-beta[1])

list( int=int, conv=conv, x=beta, y=exp(PDF) )

}

get.alpha <- function(d)

{ # estimate alpha from data

rho <- d$y/d$x

n <- length(d$y)

mean(rho)^2/( (n-1)*var(rho)/n - mean(rho)*mean(1/d$x) )

}

To plot the data, then use poi.beta.laplace and plot its output for ν = 1, 5:

data(cloth)

attach(cloth)

plot(x,y)

beta.post <- poi.beta.laplace(cloth,beta=beta,nu=1)

plot(beta.post,type="l",xlab="beta",ylab="Posterior density")

beta.post <- poi.beta.laplace(cloth,beta=beta,nu=5)

lines(beta.post,lty=2)

(A crude value for the integral of the posterior density is given in beta.post$int.) Assess
the sensitivity of the posterior to the values of ν and φ, and explain in qualitative terms
how the posterior depends on these hyperparameters.

(Section 11.3.1; Gaver and O’Muircheartaigh, 1987)

3. (a) If U1 and U2 have conditional densities

f(u1 | u2) =
u2 exp(−u2u1)

1 − exp(−u2B)
, 0 < u1 < B,

f(u2 | u1) =
u1 exp(−u1u2)

1 − exp(−u1B)
, 0 < u2 < B,

show that π(u1) ∝ u−1
1 {1 − exp(−Bu1)}, for 0 < u1 < B.

(b) Verify that the function below performs Gibbs sampling for this problem, and that
add.exp.lines draws the density estimates based on equation (11.41):

exp.gibbs <- function(u1=NULL, u2=NULL, B, I=100, S=100 )

{

H <- function(u0, B, S=ncol(u0) )

{

rexp.trunc <- function( S, lambda, B)

-log( 1-runif( n=S, max=1-exp(-lambda*B)) )/lambda

u1 <- rexp.trunc( S, u0[2,], B)

u2 <- rexp.trunc( S, u1, B)

rbind( u1, u2 )
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}

out <- array(NA, dim = c(2, S, I))

if (is.null(u1)) u1 <- runif(n=S, max=B)

if (is.null(u2)) u2 <- runif(n=S, max=B)

out[,,1] <- rbind( u1, u2 )

for (i in 2:I) out[,,i] <- H( out[,,i-1], B )

out

}

add.exp.lines <- function( exp.out, i, B=10)

{

dexp.trunc <- function( u, lambda, B )

dexp(u, rate=lambda)/(1-exp(-lambda*B))

S <- dim(exp.out)[2]

I <- dim(exp.out)[3]

u <- seq(0.0001,B,length=1000)

fu <- rep(0,1000)

for (s in 1:S) fu <- fu + dexp.trunc(u,exp.out[3-i,s,I],B)/S

lines(u,fu,col="red")

invisible()

}

To use these functions:

par(mfrow=c(3,2))

B <-10; I <- 15; S <- 500

exp.out <- exp.gibbs(B=B,I=I,S=S)

hist(exp.out[1,,I],prob=TRUE,nclass=15,xlab="u1",ylab="PDF",xlim=c(0,B),ylim=c(0,1))

add.exp.lines(exp.out,1)

hist(exp.out[2,,I],prob=TRUE,nclass=15,xlab="u2",ylab="PDF",xlim=c(0,B),ylim=c(0,1))

add.exp.lines(exp.out,2)

To see how the output of the sampler varies from run to run, try repeating

exp.out <- exp.gibbs(B=B,I=I,S=S)

hist(exp.out[1,,I],prob=TRUE,nclass=15,xlab="u1",ylab="PDF",xlim=c(0,B))

add.exp.lines(exp.out,1)

hist(exp.out[2,,I],prob=TRUE,nclass=15,xlab="u2",ylab="PDF",xlim=c(0,B))

add.exp.lines(exp.out,2)

What is the effect of different values of I and S?

(c) Show that if B → ∞, no proper density can solve the integral equations in (a), and
deduce that the Gibbs sampler does not converge. Assess what this means in practical
terms by taking some large values of B in (b).

(Section 11.3.3; Casella and George, 1992)

4. Using Example 11.23 as a template, write code to generate Cauchy data using N(u, σ2)
proposals centred on the current value u. For what values of σ is (a) the acceptance
probability highest, (b) the autocorrelation between successive values lowest?

(Section 11.3.3)
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5. Use our previous discussions of the hierarchical Poisson model to give forms for the full
conditional densities for the pumps data of Example 11.19, and use them to check that
the function poi.gibbs below implements the Gibbs sampler for this problem.

poi.gibbs <- function(d, alpha, gamma, delta, I, S)

{

poi.sim <- function(y, x, alpha, gamma, delta, theta)

{

n <- length(y)

lambda <- theta[1:n]

beta <- theta[n + 1]

out1 <- rgamma(n, alpha + y)/(x + 1/beta)

out2 <- (sum(out1) + delta)/rgamma(1, gamma + n * alpha)

c(out1, out2)

}

n <- length(d$y)

out <- array(NA, dim = c(I, S,n+1))

out[1, , ] <- rexp((n + 1) * S)

for(s in 1:S)

for(i in 2:I)

out[i,s,] <- poi.sim(d$y, d$x, alpha, gamma, delta, out[i - 1, s,])

out

}

The output is an I ×S× (n+1) array, where I is the number of iterations, S the number
of independent replicates of the sampler, and n the number of pumps. Run the sampler
and assess how quickly it converges:

data(pumps)

system.time( pumps.sim <- poi.gibbs(pumps, alpha=1.8, delta=0.1, gamma=1,

I=1000, S=5) )

puts an I × S × (n + 1) array of output into pumps.sim, and we can assess convergence
using time series functions:

par(mfrow=c(2,3))

plot.ts(pumps.sim[,1,1])

acf(pumps.sim[,1,1])

pacf(pumps.sim[,1,1])

plot.ts(pumps.sim[,1,11])

acf(pumps.sim[,1,11])

pacf(pumps.sim[,1,11])

which gives the first replicate of the sampler for the parameters λ1 and β. Use these
and the other time series tools in Rto assess how quickly the simulation converges in this
example, for the various parameters.

More sophisticated analysis is provided by the coda library, which can be downloaded
from CRAN:
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library(coda)

library(help="coda") # list of functions for which help can be sought

pumps.mcmc <- mcmc(pumps.sim[,1,])

plot(pumps.mcmc)

effectiveSize(pumps.mcmc)

summary(pumps.mcmc)

coda includes functions for assessment of convergence, using the replicate series:

pumps.list <- mcmc.list(mcmc(pumps.sim[,1,]), mcmc(pumps.sim[,2,]),

mcmc(pumps.sim[,3,]), mcmc(pumps.sim[,4,]), mcmc(pumps.sim[,5,]))

gelman.diag(pumps.list)

gelman.plot(pumps.list)

geweke.diag(pumps.list)

geweke.plot(pumps.list)

raftery.diag(pumps.list)

You will need to check the help files to understand the output from these functions. Make
any modifications to the number of iterations that seem useful, and re-run the sampler
for long enough for the output to be reliable.

(Section 11.3.3; Gaver and O’Muircheartaigh, 1987)

6. A simple model for the HUS data of Example 4.40 is that the counts Y1, . . . , Yn are
independent Poisson variables with

E(Yj) =

{
λ1, j = 0, . . . , τ ,
λ2, j = τ + 1, . . . , n.

For a Bayesian formulation, we suppose a priori that λ1, λ2 are independent gamma
variables with parameters a1, β1 and a2, β2, where a1 and a2 are specified and β1, β2 are
independent variables from the gamma density with specified parameters c and d, and τ
is uniform on 1, . . . , n.

(a) Construct the directed acyclic and moral graphs for this model.

(b) Show that the full conditional distributions are

λ1 | β1, τ, y ∼ G(a1 + sτ , τ + β1),

λ2 | β2, τ, y ∼ G(a2 + sn − sτ , n − τ + β2),

β1 | λ1 ∼ G(a1 + c, λ1 + d),

β2 | λ2 ∼ G(a2 + c, λ2 + d),

Pr(τ = k | λ1, λ2, y) ∝ exp {sk log(λ1/λ2) + k(λ2 − λ1)} , k = 1, . . . , n,

where sτ = y1 + · · ·+ yτ and G(a, b) indicates the gamma density with parameters a and
b, that is, baya−1e−by/Γ(a), for y > 0 and a, b > 0.

(c) Check that the following code applies this algorithm, with R iterations.

hus.gibbs <- function(init, y, R=10, a1=1, a2=1, c=0.01, d=0.01)

{ # Gibbs sampler starting from init with R iterations

sim.tau <- function(y, lam1, lam2)

{
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s <- cumsum(y)

tau <- 1:length(y)

p <- exp( s*log(lam1/lam2) + tau*(lam2-lam1) )

sample(1:length(y), size=1, prob=p)

}

lik <- function(y, para, a1, a2, c, d)

{ # computes log likelihood, log prior at current parameters

lam1 <- para[1]

lam2 <- para[2]

beta1 <- para[3]

beta2 <- para[4]

tau <- para[5]

lam <- c(rep(lam1,tau),rep(lam2,length(y)-tau))

L <- sum( dpois(y, lam, log=TRUE) )

P <- dgamma(lam1, shape=a1, rate=beta1, log=TRUE) +

dgamma(lam2, shape=a2, rate=beta2, log=TRUE) +

dgamma(beta1, shape=c, rate=d, log=TRUE) +

dgamma(beta2, shape=c, rate=d, log=TRUE)

c(L, P)

}

step <- function(j, para, y, a1, a2, c, d)

{ # single step of random scan Gibbs sampler: update para[j]

lam1 <- para[1]

lam2 <- para[2]

beta1 <- para[3]

beta2 <- para[4]

tau <- para[5]

s.tau <- sum(y[1:tau])

s.n <- sum(y)

n <- length(y)

sim <- switch(j,

rgamma(1, shape=a1+s.tau, rate=tau+beta1), # lam1

rgamma(1, shape=a2+s.n-s.tau, rate=n-tau+beta2), # lam2

rgamma(1, shape=a1+c, rate=lam1+d), # beta1

rgamma(1, shape=a2+c, rate=lam2+d), # beta2

sim.tau(y, lam1, lam2)) # tau

para[j] <- sim

para

}

paras.out <- matrix(init, R, length(init), byrow=TRUE)

log.lik <- lik(y, init, a1, a2, c, d)

lik.out <- matrix(log.lik, R, length(log.lik), byrow=TRUE)

for (r in 2:R)

{ j <- sample(1:5) # random order for five possible updates

para <- paras.out[r-1,]

for (i in 1:length(j)) para <- step(j[i], para, y, a1, a2, c, d)

paras.out[r,] <- para

lik.out[r,] <- lik(y, para, a1, a2, c, d) }

cbind(paras.out, lik.out) # output is parameters, log likelihood, log prior
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}

hus <- c(1,5,3,2,2,1,0,0,2,1,1,7,11,4,7,10,16,16,9,15)

system.time( gibbs.out <- hus.gibbs(c(5, 5, 1, 1, 2), hus, R=1000))

plot.ts(gibbs.out[,1], main="lambda1") # time series plot for lam1

plot.ts(gibbs.out[,2], main="lambda1") # time series plot for lam2

plot.ts(gibbs.out[,6], main="log lik") # and of log likelihood

table(gibbs.out[,5]) # tabulate observed values of tau

Run the code with different initial values and with different values for a1, a2, c and d.
What do you conclude? Do your conclusions agree with those based only on the likeli-
hoood function?

(d) Try this with different HUS data, from Newcastle over the same period:

hus <- c(6,1,0,0,2,0,1,8,4,1,4,0,4,3,3,13,14,8,9,19)

system.time( gibbs.out <- hus.gibbs(c(5, 5, 1, 1, 2), hus, R=10000))

plot.ts(gibbs.out[,1], main="lambda1") # time series plot for lam1

plot.ts(gibbs.out[,2], main="lambda1") # time series plot for lam2

plot.ts(gibbs.out[,6], main="log lik") # and of log likelihood

table(gibbs.out[,5]) # tabulate observed values of tau

What do you conclude?

(Section 11.3.3; Henderson and Matthews, 1993)

7. Consider Bayesian analysis of the data in Example 6.22, with an unknown changepoint.
Suppose for now that consecutive observations are independent normal variables with
variance σ2 and means µ1 for j = 1, . . . , γ and µ2 for j = γ + 1, . . . , n, and that we take
uniform prior densities for µ1 and µ2, that σ2 ∼ IG(a, b) for specified a and b, and that
γ is assumed uniform on {1, . . . , n − 1} a priori.

(a) Show that

π(µ1, µ2, σ
2, γ | y) ∝ (σ2)−n/2−a−1 exp

{
−h(µ1, µ2, σ

2, γ)
}

, γ = 1, . . . , n − 1,

where

2σ2h(µ1, µ2, σ
2, γ) = 2b +

γ∑

j=1

(yj − µ1)
2 +

n∑

j=γ+1

(yj − µ2)
2

= 2b +

γ∑

j=1

(yj − y1)
2 +

n∑

j=γ+1

(yj − y2)
2

+γ(y1 − µ1)
2 + (n − γ)(y2 − µ2)

2,

with γy1 =
∑γ

j=1 yj and (n−γ)y2 =
∑n

j=γ+1 yj. Hence find the full conditional densities
for the four parameters.

(b) Complete this code, which runs a Gibbs sampler for the parameters:

beaver.gibbs <- function(init, y, R=10, a=1, b=0.05)

{ # Gibbs sampler starting from init with R iterations

sim.g <- function(y, mu1, mu2, lam)
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{

n <- length(y)

p <- rep(NA,n-1)

for (g in 1:(n-1))

{ mu <- c(rep(mu1,g),rep(mu2,n-g))

p[g] <- sum((y-mu)^2) }

sample(1:(n-1), size=1, prob=exp(-lam*p/2))

}

lik <- function(y, para, a, b)

{ # computes log likelihood, log prior at current parameters

mu1 <- para[1]

mu2 <- para[2]

lam <- para[3]

g <- para[4]

n <- length(y)

mu <- c(rep(mu1,g),rep(mu2,n-g))

L <- sum( dnorm(y, mu, sd=sqrt(1/lam), log=TRUE) )

P <- dgamma(lam, shape=a, rate=b, log=TRUE)

c(L, P)

}

step <- function(j, para, y, a, b)

{ # single step of random scan Gibbs sampler: update para[j]

mu1 <- para[1]

mu2 <- para[2]

lam <- para[3]

g <- para[4]

n <- length(y)

mu <- c(rep(mu1,g),rep(mu2,n-g))

SS <- sum((y-mu)^2)

sim <- switch(j,

rnorm(1, mean(y[1:g]), 1/sqrt(lam*g)), # mu1

rnorm(1, mean(y[(g+1):n]), 1/sqrt(lam*(n-g))), # mu2

rgamma(1, shape=a+n/2, rate=b+SS/2), # lambda

sim.g(y, mu1, mu2, lam)) # gamma

para[j] <- sim

para

}

paras.out <- matrix(init, R, length(init), byrow=TRUE)

log.lik <- lik(y, init, a, b)

lik.out <- matrix(log.lik, R, length(log.lik), byrow=TRUE)

for (r in 2:R)

{ j <- sample(1:4) # random order for four possible updates

para <- paras.out[r-1,]

for (i in 1:length(j)) para <- step(j[i], para, y, a, b)

paras.out[r,] <- para

lik.out[r,] <- lik(y, para, a, b) }

cbind(paras.out, lik.out) # output is parameters, log likelihood, log prior

}

system.time( gibbs.out <- beaver.gibbs(c(36, 40, 3, 38), beaver$temp, R=1000))
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par(mfrow=c(2,3))

plot.ts(gibbs.out[,1],main="mu1") # time series plot for mu1

plot.ts(gibbs.out[,2],main="mu2") # time series plot for mu2

plot.ts(gibbs.out[,3],main="lambda") # time series plot for lambda

plot.ts(gibbs.out[,4],main="gamma") # time series plot for gamma

plot.ts(gibbs.out[,5],main="log likelihood") # and of log likelihood

(c) Choose a suitable R, run the Gibbs sampler, and use the output to give posterior
standard errors and 90% posterior credible intervals for the changepoint γ, for the change
in body temperature µ2−µ1, and for σ2. Does body temperature change before the beaver
leaves the lodge, or at the same time?

(d) In fact successive values of yj are positively autocorrelated. Discuss briefly how you
would deal with this in practice, and describe qualitatively the effect it will have on your
inference.

(Section 11.3.3; Reynolds, 1994)

8. (a) Suppose that a posterior density π(θ | y) is awkward but has a much simpler form
π(θ | u, y) if the data y are augmented to (u, y). Show that

π(θ | y) =

∫
π(θ | u, y)π(u | y) du, π(u | y) =

∫
π(u | θ, y)π(θ | y) dθ,

and deduce that π(θ | y) satisfies an integral equation

π(θ | y) =

∫
K(θ, θ′; y)π(θ′ | y) dθ′.

Explain the relation between this and the data augmentation algorithm:

• choose an initial guess π(0)(θ) for π(θ | y).

• Then for i = 0, . . . , I − 1 repeat:

– generate θ1, . . . , θS
iid
∼ π(i)(θ);

– generate Us
ind
∼ π(u | θs, y), for s = 1, . . . , S; then

– increment i, and set π(i)(θ) = S−1
∑

s π(θ | us, y).

(b) Consider a multinomial variable (U0, . . . , U4) with denominator m and probabilities
(π0, . . . , π4) = (1/2, θ/4, (1 − θ)/4, (1 − θ)/4, θ/4). Suppose that y1 = u0 + u1 = 125,
y2 = u2 = 18, y3 = u3 = 20 and y4 = u4 = 34 are observed, so u0 and u1 are unknown.
Take prior π(θ) = 1, 0 < θ < 1. Show that

π(θ | u, y) =
Γ(u1 + y2 + y3 + y4 + 1)

Γ(u1 + y4 + 1)Γ(y2 + y3 + 1)
θu1+y4(1 − θ)y2+y3, 0 < θ < 1,

π(u | θ, y) =

(
y1

u1

)
θu12y1−u1

(θ + 2)y1
, u1 = 0, . . . , y1.

Check that the following code implements this:

y1 <- 125; y2 <- 18; y3 <- 20; y4 <- 34 # data

S <- 1000; I <- 10 # I iterations, S simulations

u <- th <- matrix(NA, I, S) # store u and theta

for (i in 1:I) # data augmentation
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{ th[i,] <- if (i==1) runif(S)

else rbeta(S, shape1=u[i-1,]+y4+1, shape2=y2+y3+1)

u[i,] <- rbinom(S, size=y1, prob=th[i,]/(th[i,]+2)) }

# plot output values of theta for iterations 1, 2, and I

plot(density(th[1,]),type="l",xlab="theta",ylab="Posterior",ylim=c(0,10))

lines(density(th[2,]),col=2)

lines(density(th[I,]),col=3)

# exact calculation for comparison

m <- 500

x <- seq(from=0,to=1,length=m)

d <- (0.5+x/4)^y1*(1-x)^(y2+y3)*x^y4

d <- d/mean(d)

plot(x,d,type="l",xlab="theta",ylab="Posterior", ylim=c(0,10))

lines(density(th[I,]),col=2)

# better to use Rao-Blackwellized formula

d <- rep(0,m)

for (s in 1:S) d <- d + dbeta(x, shape1=u[I,s]+y4+1, shape2=y2+y3+1)/S

lines(x,d,col=3)

Experiment with different values of I and S. Discuss your findings. Can you see a link
to the Gibbs sampler?

(Tanner, 1996, Chapter 5)
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Chapter 12

Marginal and Conditional

Likelihood

The practicals in this chapter are based on Alessandra Brazzale’s work and in particular her
libraries for conditional inference in R and in S-Plus ; see

http://www.isib.cnr.it/~brazzale/lib.html

You will need to download and install these libraries first.

1. (a) Here is code for generating random samples from the tν distribution and then per-
forming conditional inference for the location parameter, allowing for variation in the
scale parameter:

nu <- 3; n <- 10

y <- rt(n, df=nu)

qqnorm(y)

library(cond)

library(marg)

y.rsm <- rsm(y~1, family=student(nu))

y.cond <- cond(y.rsm, offset=1)

y.cond

plot(y.cond)

Asses how strongly the difference between the large-sample and conditional inferences
depends on n and ν as they vary, by generating different samples. What seems to be the
effect of the ancillary?

(b) Here is code for the regression analysis of the data on tides in Yarmouth of Ex-
ample 6.33, using Gumbel errors.

data(tide)

y <- tide$Yarmouth[!is.na(tide$Yarmouth)] # Yarmouth data, no missing values

year <- tide$year[!is.na(tide$Yarmouth)] # and corresponding years

yar.rsm <- rsm(y~year,family=extreme) # Fit regression model with Gumbel errors

yar.cond <- cond(yar.rsm, offset=year) # Conditional inference for coeff. of year

yar.cond

plot(yar.cond)
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Is the small difference between the large-sample and conditional analyses in this example
coherent with what you observed in (a)?

(Section 12.2)

2. Verify that a random variable Y with Laplace density 1
2 exp(−|y − θ|), −∞ < y < ∞,

has cumulant generator1

K(t) = tθ − log(1 − t2).

Hence calculate the saddlepoint approximations to the density and distribution functions
of an average of n independent Laplace variables. Implement them as functions in R, and
compare them visually with simulations obtained by, for example,

n <- 1; R <- 20000

y <- rexp(R)-rexp(R)

y <- sort(c(y,-y)) # to symmetrize the sample and hence output

par(mfrow=c(1,2))

plot(density(y,width=0.2,n=200),type="l",ylab="PDF")

CDF <- seq(1,2*R,1)/(2*R+1)

plot(y,CDF,type="s")

(Section 12.3.2)

3. For a conditional analysis of the coefficients for the urine data of Practical 10.9, we set

data(urine)

fit <- glm(r~.,subset=-c(1,55),data=urine,binomial)

fit.cond <- cond(fit,offset=calc) # conditional analysis for coefficient of calc

summary(fit.cond)

plot(fit.cond)

Try conducting conditional inference for coefficients of other covariates. Does this change
your conclusions for any of them? Discuss.

(Section 12.3.3; Andrews and Herzberg, 1985, pp. 249–251)

1Note that Y may be expressed as θ+X1−X2, where the Xj are independent standard exponential variables.
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