Model Uncertainty and Incomplete Data Analysis

John Copas
University of Warwick UK
jbc@stats.warwick.ac.uk

Ref:
Copas, J.B. and Eguchi, S (2005)
Local Model Uncertainty and Incomplete Data Bias (with discussion)
to appear in JRSSB
How to measure the health risk of passive smoking?

Case-control studies

Case = non-smoker with cancer
Control = non-smoker without cancer
Exposed = smoker in household
Unexposed = non-smoking household

e.g. German study:

<table>
<thead>
<tr>
<th></th>
<th>Case</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Non-exp</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>45</td>
</tr>
</tbody>
</table>

Relative risk = 2.13 (0.75, 6.05)
Meta analysis of 37 studies gives
Relative risk = 1.24 (1.12, 1.35)
Risk highly significant ($P < 0.01\%$)

.... BUT

there are some nasty problems ...

Publication bias — not all studies are reviewed
Confounding — effect may be partly explained by differences on other variables
Measurement error — very crude measure of exposure
All these are problems of *incomplete data*: we would like to measure z but can only measure y

e.g.

$z =$ data on all studies + selection indicators,
$y =$ data on selected studies only

$z =$ (response, treatment, potential confounders)
$y =$ (response, treatment)

$z =$ (disease status, true exposure, measurement error)
$y =$ (disease status, observed exposure = true + error)

In all cases we can write $z = h(y)$
The basic model §2

Model: \(z \sim f_Z(z, \theta) \)

\[\Rightarrow y \sim f_Y(y, \theta) \]

\[= \int_{z|y} f_Z(z, \theta) Jdz \]

Data on \(z \rightarrow \text{MLE} = \hat{\theta}_Z \)

Data on \(y \rightarrow \text{MLE} = \hat{\theta}_Y \)

If \(f_Z \) is correct, asymptotically

\[E(\hat{\theta}_Z) = E(\hat{\theta}_Y) = \theta \]

BUT

for \(\theta \) to be estimable from \(y \), \(f_Z \) must make untestable (ignorability) assumptions, which may be wrong
A Simple Example ...

Pre-referendum poll

<table>
<thead>
<tr>
<th>non</th>
<th>oui</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>450</td>
<td>1000</td>
</tr>
</tbody>
</table>

\[P(\text{non}) = \theta \]

Naive model: \(x \sim \text{binomial}(1000, \theta) \)

\[\Rightarrow \hat{\theta} = 0.55(0.52, 0.58) \]
BUT what about non-response?

\[P(non) = \theta, \quad P/respond = \psi \]

We are assuming the MAR (Missing At Random) model:

<table>
<thead>
<tr>
<th></th>
<th>non</th>
<th>oui</th>
</tr>
</thead>
<tbody>
<tr>
<td>respond</td>
<td>(\theta \psi)</td>
<td>((1 - \theta) \psi)</td>
</tr>
<tr>
<td>refuse</td>
<td>(\theta (1 - \psi))</td>
<td>((1 - \theta)(1 - \psi))</td>
</tr>
</tbody>
</table>
BUT the correct model is: —

<table>
<thead>
<tr>
<th></th>
<th>non</th>
<th>oui</th>
</tr>
</thead>
<tbody>
<tr>
<td>respond</td>
<td>θp_1</td>
<td>$(1 - \theta)p_0$</td>
</tr>
<tr>
<td>refuse</td>
<td>$\theta(1 - p_1)$</td>
<td>$(1 - \theta)(1 - p_0)$</td>
</tr>
</tbody>
</table>

$$\Rightarrow x \sim \text{binomial}(1000, \theta^*)$$

where

$$\theta^* = \frac{\theta p_1}{\theta p_1 + (1 - \theta)p_0} = \frac{\rho \theta}{\rho \theta + (1 - \theta)}$$

and

$$\rho = \frac{p_1}{p_0} = \text{relative risk}$$

Note: MAR $\Leftrightarrow \rho = 1 \Leftrightarrow \theta^* = \theta$
Points to note: —

- $\hat{\theta}$ is unbiased only if $\rho = 1$ (MAR)
- Inference is sensitive to the value of ρ
- It is impossible to estimate ρ from these data
- It is impossible to estimate θ unless we make unverifiable assumptions
- Bayesian inference about θ will be sensitive to the prior on ρ

For example, suppose $\rho \sim N(1, \tau^2)$ with a vague prior on θ ...
Local mis-specification of f_Z §4

If

$$g_Z(z) = f_Z(z, \theta) \exp\{\epsilon u_Z(z, \theta)\}$$

then

$$\int g_Z dz = \int f_Z(1 + \epsilon u_Z) dz = 1 + \epsilon E_f(u_Z)$$

Hence assume

$$E_f(u_Z) = 0, E_f(u_Z^2) = 1$$

$$\epsilon = \text{“mis-specification distance”}$$

$$\simeq \left\{2 \times KL(f_Z, g_Z)\right\}^{\frac{1}{2}}$$

and

$$u_Z = \text{“mis-specification direction”}$$
Local mis-specification of f_Y

If $z \sim g_Z$ then

$$y \sim g_Y = \int_{z|y} f_Z(z, \theta) \{1 + \epsilon u_Z(z, \theta)\} J dz$$

$$= f_Y(y, \theta) \exp\{\epsilon u_Y(y, \theta)\}$$

where

$$u_Y(y, \theta) = E_f \{u_Z(z, \theta)|y\}$$

Compare ...

$$s_Y(y, \theta) = \frac{\partial \log f_Y(y, \theta)}{\partial \theta}$$

$$= \frac{\partial}{\partial \theta} \log \int_{z|y} f_Z(z, \theta) J dz$$

$$= E_f \left\{ \frac{\partial f_Z(z, \theta)}{\partial \theta} \mid y \right\}$$

$$= E_f \{s_Z(z, \theta)|y\}$$
Maximum Likelihood

MLE $\hat{\theta}_Z$ is given by

$$\frac{1}{n} \sum s_Z(z_i, \hat{\theta}_Z) = 0$$

If $z_i \sim g_Z$ and $n \to \infty$

$$0 = \int s_Z(z, \theta_Z)f_Z(z, \theta)\exp\{\epsilon u_Z(z, \theta)\}dz$$

$$\sim \int \{s_Z(z, \theta) - I_Z(\theta_Z - \theta)\}f_Z\{1 + \epsilon u_Z\}dz$$

$$= -I_Z(\theta_Z - \theta) + \epsilon E(s_Zu_Z)$$

$$\Rightarrow \theta_Z = \theta + \epsilon I_Z^{-1}E(s_Zu_Z)$$

Similarly

$$\theta_Y = \theta + \epsilon I_Y^{-1}E(s_Yu_Y)$$

Hence

$$b_\theta = \theta_Y - \theta_Z = \epsilon Eu_Z\{I_Y^{-1}s_Y - I_Z^{-1}s_Z\}$$
For given “distance” ϵ, the *incomplete data bias* b_θ depends on the “direction” u_Z. If $||b_\theta|| = b_\theta^T I_Y b_\theta$,

$$\max_{u_Z|\epsilon} ||b_\theta|| = \epsilon^2 (1 - \lambda_{\text{min}})$$

where λ_{min} is the smallest eigen value of the “relative efficiency matrix”

$$\Lambda = I_{\frac{1}{2}} Y I_{\frac{1}{2}}^{-1} Z I_{\frac{1}{2}} Y$$

The worst case is when $u_Y(y, \theta) \in \langle s_Y(y, \theta) \rangle$
Example §5.1: univariate missing data

\[z = (t, r) \quad y = (t^{(r)}, r) \]

where

\[t^{(r)} = \begin{cases} t & \text{if } r = 1 \\ (-\infty, +\infty) & \text{if } r = 0 \end{cases} \]

Model \(f_Z \) assumes MAR:

\[f_Z = f_T(t, \theta)\psi^r (1 - \psi)^{1-r} \]

Model \(g_Z \) allows for non-ignorable missing data:

\[g_Z = \{f_T(t, \theta)\}\{\psi^r (1 - \psi)^{1-r}\}\{\exp[\epsilon u_Z(t, r)]\} \]

\[\Rightarrow \]

\[\log \frac{P(r = 1 \mid t)}{P(r = 0 \mid t)} = \log \frac{\psi}{1 - \psi} + \epsilon \{u_Z(t, 1) - u_Z(t, 0)\} \]
Then
\[
b_\theta^2 \leq \epsilon^2 I_Y^{-1}(1 - \lambda_{\text{min}}) = \epsilon^2 I_Y^{-1}(1 - \psi) = I_Y^{-1}\psi(1 - \psi)^2 \text{Var} \left\{ \log \frac{P(r = 1|t)}{P(r = 0|t)} \right\}
\]

E.g. for binary data
\[
f_T = \theta^t(1 - \theta)^{(1-t)}
\]
\[
|b_\theta| \leq \theta(1 - \theta)|(\rho - 1)| + O(\rho - 1)^2
\]

where
\[
\rho = \frac{P(r = 1|t = 1)}{P(r = 1|t = 0)}
\]
Example §5.2: potential confounder

\[z = (t, x, c) \quad y = (t, x) \]

where

\(t = \) response, \(x = \) treatment, \(c = \) confounder

Randomized experiment \(\Rightarrow \) \(x \) and \(c \) are independent

Observational data \(\Rightarrow \) \(x \) and \(c \) may be correlated \(\Rightarrow \) dependence of \(t \) on \(x \) is confounded with their dependence via \(c \)

\[
f_Z(t, x, c, \theta) = f_{T|X,C}(t|x, c, \theta)f_X(x)f_C(c)
\]

\[
f_Y(t, x, \theta) = f_{T|X}(t|x, \theta)f_X(x)
\]
\[g_Z = f_{T|X,C}(t|x,c,\theta) f_X(x) f_C(c) \exp\{\varepsilon u(x,c)\} \]

\[\Rightarrow \log \frac{P\{t|x\}}{P\{t|\text{do}(x)\}} = \varepsilon \mathbb{E}\{u(x,c)|t,x\} \]

where

\[P\{t|x\} = \int P(t|x,c) P(c|x) dc \]

and

\[P\{t|\text{do}(x)\} = \int P(t|x,c) P(c) dc \]

(These are the same if the experiment is randomized)

\[b_\theta^2 \leq I_{T|X}^{-1} (1 - \lambda_{\text{min}}) \text{Var} \left\{ \log \frac{P(c|x)}{P(c)} \right\} \]
e.g. $f_Z = \text{normal linear model with}$

$$E(t|x, c) = \alpha + \theta x + \gamma c$$

$$E(t|x) = \alpha^* + \theta x$$

then

$$b^2_{\theta} \leq I^{-1}_{T|X} \text{cor}^2(t, c|x)\text{cor}^2(c, x)$$

Worst case is when g_Z gives c a linear regression on x
Example: Meta Analysis of Case-Control Studies

t = presence or absence of cancer \((t = 1, 0)\)
x = presence or absence of exposure \((x = 1, 0)\)

Standard model is

\[
\log P(\text{cancer}|x) = \psi + \theta x
\]

\(\Rightarrow \theta = \log \text{relative risk}\)

2 \times 2 table from \(j\)th case-control study gives

\[
\hat{\theta}_j \sim N(\theta, \sigma_j^2)
\]

Meta analysis weights \(w_j = 1/(\sigma_j^2 + \tau^2)\) give

\[
\tilde{\theta} = \frac{\sum w_j \hat{\theta}_j}{\sum w_j}
\]

\(\sim N(\theta, 1/\sum w_j)\)

\[
\tilde{\theta} = 0.22(0.12, 0.32)
\]
There will be many confounders c (e.g. quality of diet)

$$\log P(\text{cancer}|x, c) = \psi + \theta x + \alpha c$$

with $\text{Var}(c) = 1$

$$\Rightarrow \lambda = 1 - \frac{\alpha^2}{\sigma^2}$$

$$\Rightarrow E(\hat{\theta}_j) = \theta + \alpha\{E(c|x = 1) - E(c|x = 0)\}$$

$$= \theta \text{ if } x \text{ and } c \text{ are independent}$$

Suppose

$$c|x \sim N(\psi^* + \epsilon x, 1 - \epsilon^2 \sigma^2_x)$$

$$\Rightarrow \text{corr}(x, c) = \rho = \frac{\epsilon \sigma_x}{\sqrt{1 + \epsilon^2 \sigma^2_x}}$$

$$E(\hat{\theta}_j) = \theta + \alpha \epsilon$$
Simplification: assume all studies are similar

Strength of confounder:

\[\lambda = 1 - \frac{\alpha^2}{\sigma_x^2} \]

Degree of non-ignorability:

\[\rho = \frac{\epsilon \sigma_x}{\sqrt{1 + \epsilon^2 \sigma_x^2}} \]

Resulting bias

\[\text{bias} = \alpha \epsilon \]

Sensitivity Analysis:

estimate \(\sigma_x \), fix \(\lambda \), plot bias against \(\rho \)

find smallest \(\rho \) such that

\[|\epsilon \alpha| \geq |\tilde{\theta}| - \frac{1.96}{\sqrt{\sum w_j}} \]
Publication Bias in Meta Analysis

\[z = (t, x, r), \quad y = (t^{(r)}, x^{(r)}, r) \]

\(t \) = study outcome
\(x^2 = \text{Var}(t) \)
\(r = 1 \) published, \(r = 0 \) unpublished

\[t|x \sim N(\theta, x^2) \]

\[x \sim f_X(x) \]

\(f_Z : r \perp t|x \)

\(g_Z : P(\text{publish}|t, x) = p(t, x) \)
\[\tilde{\theta} = \frac{\sum x^{-2}t}{\sum x^{-2}} \]

\[\Rightarrow \text{bias} = \frac{\mathbb{E}\{x^{-2}(t - x)p(t, x)\}}{\mathbb{E}\{x^{-2}p(t, x)\}} \]

\[P(\text{unpublished}) = p = 1 - \mathbb{E}\{p(t, x)\} \]

THEOREM

If \(\mathbb{E}\{p(t, x)|x\} \downarrow x \) then

\[|\text{bias}| \leq \frac{\phi\{\Phi^{-1}(p)\}}{1 - p} \frac{\mathbb{E}(x^{-1}|r = 1)}{\mathbb{E}(x^{-2}|r = 1)} \]

Ref: Copas and Jackson (2004) *A bound for publication bias based on the fraction of unpublished studies*, Biometrics, 60, 146-153
Observed studies \((t_i, x_i), i = 1, 2, \cdots n\)

Sensitivity Analysis:

Plot

\[
B(m) = \frac{m + n}{n} \phi \left\{ \Phi^{-1} \left(\frac{n}{m + n} \right) \right\} \frac{\sum x_i^{-1}}{\sum x_i^{-2}}
\]

against \(m\) for \(m = 1, 2, \cdots\)

Find smallest \(m\) such that

\[
B(m) \geq \left| \frac{\sum t_i x_i^{-2}}{\sum x_i^{-2}} \right| - \frac{1.96}{\sqrt{\sum x_i^{-2}}}
\]